Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. C. Thompson is active.

Publication


Featured researches published by M. C. Thompson.


Physics of Plasmas | 2012

A new high performance field reversed configuration operating regime in the C-2 devicea)

Michel Tuszewski; Artem Smirnov; M. C. Thompson; T. Akhmetov; A. Ivanov; R. Voskoboynikov; D. Barnes; Michl Binderbauer; R. Brown; D. Q. Bui; R. Clary; K. D. Conroy; Bihe Deng; S. A. Dettrick; Jon Douglass; Eusebio Garate; F. J. Glass; H. Gota; H.Y. Guo; Deepak K. Gupta; S. Gupta; John Kinley; K. Knapp; S. Korepanov; A. Longman; M. Hollins; X.L. Li; Y. Luo; R. Mendoza; Y. Mok

Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the nu2009=u20092 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.


Review of Scientific Instruments | 2012

Internal magnetic field measurement on C-2 field-reversed configuration plasmasa)

H. Gota; M. C. Thompson; K. Knapp; A. Van Drie; Bihe Deng; R. Mendoza; H.Y. Guo; Michel Tuszewski

A long-lived field-reversed configuration (FRC) plasma has been produced in the C-2 device by dynamically colliding and merging two oppositely directed, highly supersonic compact toroids (CTs). The reversed-field structure of the translated CTs and final merged-FRC state have been directly verified by probing the internal magnetic field structure using a multi-channel magnetic probe array near the midplane of the C-2 confinement chamber. Each of the two translated CTs exhibits significant toroidal fields (B(t)) with opposite helicity, and a relatively large B(t) remains inside the separatrix after merging.


Review of Scientific Instruments | 2012

Magnetic diagnostic suite of the C-2 field-reversed configuration experiment confinement vessela)

M. C. Thompson; Jon Douglass; P. Feng; K. Knapp; Y. Luo; R. Mendoza; V. Patel; Michel Tuszewski; A. Van Drie

Magnetic measurements are a fundamental part of determining the size and shape of field-reversed configuration (FRC) plasmas in the C-2 device. The magnetic probe suite consists of 44 in-vessel and ex-vessel probes constructed using various technologies: ultra-high vacuum compatible mineral-insulated cable, nested triple axis coils hand-wound on ceramic bobbins, and commercial chip inductors mounted on printed circuit boards. Together, these probes measure the three-dimensional excluded flux profile of the FRC, which approximates the shape of the separatrix between the confined plasma volume and the scrape-off layer. High accuracy is achieved by using the extensive probe measurements to compensate for non-ideal effects such as flux leakage through the vacuum vessel and bulk motion of the FRC towards the wall. A subset of the probes is also used as a set of Mirnov arrays that provide sensitive detection of perturbations and oscillations of the FRC.


Review of Scientific Instruments | 2016

Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

T. Roche; M. C. Thompson; R. Mendoza; I. Allfrey; Eusebio Garate; J. Romero; Jon Douglass

External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.


Review of Scientific Instruments | 2016

High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

B. H. Deng; M. Beall; J. Schroeder; G. Settles; P. Feng; John Kinley; H. Gota; M. C. Thompson

A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 1016 m-2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.


Physics of Plasmas | 2016

Transport studies in high-performance field reversed configuration plasmas

S. Gupta; D. Barnes; S. A. Dettrick; E. Trask; Michel Tuszewski; Bihe Deng; H. Gota; Deepak K. Gupta; K. Hubbard; S. Korepanov; M. C. Thompson; K. Zhai; T. Tajima; Tae Team

A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The num...


Review of Scientific Instruments | 2018

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

K. Zhai; T. M. Schindler; A. Ottaviano; H. Zhang; D. Fallah; J. Wells; E. Parke; M. C. Thompson; Tae Team

TAE Technologies newly constructed C-2W experiment aims to improve the ion and electron temperatures in a sustained field-reversed configuration plasma. A suite of Thomson scattering systems has been designed and constructed for electron temperature and density profile measurements. The systems are designed for electron densities of 1 × 1012 cm-3 to 2 × 1014 cm-3 and temperature ranges from 10 eV to 2 keV. The central system will provide profile measurements of Te and ne at 16 radial locations from r = -9 cm to r = 64 cm with a temporal resolution of 20 kHz for 4 pulses or 1 kHz for 30 pulses. The jet system will provide profile measurements of Te and ne at 5 radial locations in the open field region from r = -5 cm to r = 15 cm with a temporal resolution of 100 Hz. The central system and its components have been characterized, calibrated, installed, and commissioned. A maximum-likelihood algorithm has been applied for data processing and analysis.


Review of Scientific Instruments | 2016

Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

M. C. Thompson; H. Gota; S. Putvinski; Michel Tuszewski; Michl Binderbauer

The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.


Review of Scientific Instruments | 2016

The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

K. Zhai; T. Schindler; John Kinley; B. H. Deng; M. C. Thompson

The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 1013 to 4 × 1014 cm-3. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.


Review of Scientific Instruments | 2014

Overview of C-2 field-reversed configuration experiment plasma diagnostics.

H. Gota; M. C. Thompson; Michel Tuszewski; Michl Binderbauer

A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

Collaboration


Dive into the M. C. Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Korepanov

Budker Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak K. Gupta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. A. Dettrick

University of California

View shared research outputs
Top Co-Authors

Avatar

Eusebio Garate

University of California

View shared research outputs
Top Co-Authors

Avatar

T. Tajima

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge