Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Constantine Samaan is active.

Publication


Featured researches published by M. Constantine Samaan.


Archives of Physiology and Biochemistry | 2009

Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells

Phillip J. Bilan; Victor Samokhvalov; Alexandra Koshkina; Jonathan D. Schertzer; M. Constantine Samaan; Amira Klip

Obesity is associated with insulin resistance and increased risk for developing type 2 diabetes. Enlarged adipocytes develop resistance to the anti-lipolytic action of insulin. Elevated levels of fatty acids in the plasma and interstitial fluids lead to whole-body insulin resistance by disrupting normal insulin-regulated glucose uptake and glycogen storage in skeletal muscle. A new understanding has been cultivated in the past 5 to 10 years that adipocytes and macrophages (resident or bone marrow-derived) in adipose tissue of obese animals and humans are activated in a pro-inflammatory capacity and secrete insulin resistance-inducing factors. However, only recently have fatty acids themselves been identified as agents that engage toll-like receptors of the innate immunity systems of macrophages, adipocytes and muscle cells to trigger pro-inflammatory responses. This review summarizes our observations that fatty acids evoke the release of pro-inflammatory factors from macrophages that consequently induce insulin resistance in muscle cells.


Diabetologia | 2014

AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice

Hayley M. O’Neill; James S. Lally; Sandra Galic; Melissa M. Thomas; Paymon D. Azizi; Morgan D. Fullerton; Brennan K. Smith; Thomas Pulinilkunnil; Zhi-Ping Chen; M. Constantine Samaan; Sebastian B. Jørgensen; Jason R. B. Dyck; Graham P. Holloway; Thomas J. Hawke; Bryce J. W. van Denderen; Bruce E. Kemp; Gregory R. Steinberg

Aims/hypothesisObesity is characterised by lipid accumulation in skeletal muscle, which increases the risk of developing insulin resistance and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status and is activated in skeletal muscle by exercise, hormones (leptin, adiponectin, IL-6) and pharmacological agents (5-amino-4-imidazolecarboxamide ribonucleoside [AICAR] and metformin). Phosphorylation of acetyl-CoA carboxylase 2 (ACC2) at S221 (S212 in mice) by AMPK reduces ACC activity and malonyl-CoA content but the importance of the AMPK–ACC2–malonyl-CoA pathway in controlling fatty acid metabolism and insulin sensitivity is not understood; therefore, we characterised Acc2 S212A knock-in (ACC2 KI) mice.MethodsWhole-body and skeletal muscle fatty acid oxidation and insulin sensitivity were assessed in ACC2 KI mice and wild-type littermates.ResultsACC2 KI mice were resistant to increases in skeletal muscle fatty acid oxidation elicited by AICAR. These mice had normal adiposity and liver lipids but elevated contents of triacylglycerol and ceramide in skeletal muscle, which were associated with hyperinsulinaemia, glucose intolerance and skeletal muscle insulin resistance.Conclusions/interpretationThese findings indicate that the phosphorylation of ACC2 S212 is required for the maintenance of skeletal muscle lipid and glucose homeostasis.


European Journal of Cell Biology | 2011

Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant

Junna Yu; Lihuan Shi; Hui Wang; Philip J. Bilan; Zhi Yao; M. Constantine Samaan; Qing He; Amira Klip; Wenyan Niu

Adipose tissue hypoxia is an early phenotype in obesity, associated with macrophage infiltration and local inflammation. Here we test the hypothesis that adipocytes in culture respond to a hypoxic environment with the release of pro-inflammatory factors that stimulate macrophage migration and cause muscle insulin resistance. 3T3-L1 adipocytes cultured in a 1% O2 atmosphere responded with a classic hypoxia response by elevating protein expression of HIF-1α. This was associated with elevated mRNA expression and peptide release of cytokines TNFα, IL-6 and the chemokine monocyte chemoattractant protein-1 (MCP-1). The mRNA and protein expression of the anti-inflammatory adipokine adiponectin was reduced. Conditioned medium from hypoxia-treated adipocytes (CM-H), inhibited insulin-stimulated and raised basal cell surface levels of GLUT4myc stably expressed in C2C12 myotubes. Insulin stimulation of Akt and AS160 phosphorylation, key regulators of GLUT4myc exocytosis, was markedly impaired. CM-H also caused activation of JNK and S6K, and elevated serine phosphorylation of IRS1 in the C2C12 myotubes. These effects were implicated in reducing propagation of insulin signaling to Akt and AS160. Heat inactivation of CM-H reversed its dual effects on GLUT4myc traffic in muscle cells. Interestingly, antibody-mediated neutralization of IL-6 in CM-H lowered its effect on both the basal and insulin-stimulated cell surface GLUT4myc compared to unmodified CM-H. IL-6 may have regulated GLUT4myc traffic through its action on AMPK. Additionally, antibody-mediated neutralization of MCP-1 partly reversed the inhibition of insulin-stimulated GLUT4myc exocytosis caused by unmodified CM-H. In Transwell co-culture, hypoxia-challenged adipocytes attracted RAW 264.7 macrophages, consistent with elevated release of MCP-1 from adipocytes during hypoxia. Neutralization of MCP-1 in adipocyte CM-H prevented macrophage migration towards it and partly reversed the effect of CM-H on insulin response in muscle cells. We conclude that adipose tissue hypoxia may be an important trigger of its inflammatory response observed in obesity, and the elevated chemokine MCP-1 may contribute to increased macrophage migration towards adipose tissue and subsequent decreased insulin responsiveness of glucose uptake in muscle.


Diabetology & Metabolic Syndrome | 2011

The macrophage at the intersection of immunity and metabolism in obesity

M. Constantine Samaan

Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates.Obesity is associated with chronic low-grade inflammation, and this is believed to be one of the major contributors to the development of insulin resistance, which is an early event in obesity and leads to type 2 diabetes when the pancreas fails to keep up with increased demand for insulin. In this review, we discuss the role of macrophages in mediation of inflammation in obesity in metabolic organs including adipose tissue, skeletal muscle and liver. The presence of immune cells at the interface with metabolic organs modulates both metabolic function and inflammatory responses in these organs, and may provide a potential therapeutic target to modulate metabolic function in obesity.


Molecular metabolism | 2015

High intensity interval training improves liver and adipose tissue insulin sensitivity

Katarina Marcinko; Sarah Sikkema; M. Constantine Samaan; Bruce E. Kemp; Morgan D. Fullerton; Gregory R. Steinberg

Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.


Scientific Reports | 2015

Methadone induces testosterone suppression in patients with opioid addiction

Monica Bawor; Brittany B. Dennis; M. Constantine Samaan; Carolyn Plater; Andrew Worster; Michael Varenbut; Jeff Daiter; David C. Marsh; Dipika Desai; Meir Steiner; Rebecca Anglin; Margaret Coote; Guillaume Paré; Lehana Thabane; Zainab Samaan

Sex hormones may have a role in the pathophysiology of substance use disorders, as demonstrated by the association between testosterone and addictive behaviour in opioid dependence. Although opioid use has been found to suppress testosterone levels in men and women, the extent of this effect and how it relates to methadone treatment for opioid dependence is unclear. The present multi-centre cross-sectional study consecutively recruited 231 patients with opioid dependence from methadone clinics across Ontario, Canada between June and December of 2011. We obtained demographic details, substance use, psychiatric history, and blood and urine samples from enrolled subjects. The control group included 783 non-opioid using adults recruited from a primary care setting in Ontario, Canada. Average testosterone level in men receiving methadone treatment was significantly lower than controls. No effect of opioids including methadone on testosterone level in women was found and testosterone did not fluctuate significantly between menstrual cycle phases. In methadone patients, testosterone level was significantly associated with methadone dose in men only. We recommend that testosterone levels be checked in men prior and during methadone and other opioid therapy, in order to detect and treat testosterone deficiency associated with opioids and lead to successful methadone treatment outcomes.


Physiological Reports | 2014

Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss

M. Constantine Samaan; Katarina Marcinko; Sarah Sikkema; Morgan D. Fullerton; Tahereh Ziafazeli; Mohammad I. Khan; Gregory R. Steinberg

Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation.


Neuropsychiatric Disease and Treatment | 2014

Evaluation of clinical and inflammatory profile in opioid addiction patients with comorbid pain: results from a multicenter investigation

Brittany B. Dennis; M. Constantine Samaan; Monica Bawor; James Paul; Carolyn Plater; Guillaume Paré; Andrew Worster; Michael Varenbut; Jeff Daiter; David C. Marsh; Dipika Desai; Lehana Thabane; Zainab Samaan

Background Chronic pain is the most commonly reported comorbidity among patients with opioid addiction receiving methadone maintenance treatment (MMT), with an estimated prevalence ranging between 30% and 55%. Evidence suggests that patients with comorbid pain are at high risk for poor treatment response, including continued illicit substance use. Due to the important relationship between the presence of pain and illicit substance abuse within the MMT setting, it is imperative that we target our efforts toward understanding the characteristics of this patient population. Methods The primary objective of this study was to explore the clinical and inflammatory profile of MMT patients reporting comorbid pain. This multicenter study enrolled patients (n=235) on MMT for the treatment of opioid dependence. Clinical history and blood and urine data were collected. Blood samples were obtained for estimating the serum levels of inflammatory markers (tumor necrosis factor [TNF]-α, interleukin-1 receptor antagonist [IL-1ra], IL-6, IL-8, IL-10, interferon [IFN]-γ and chemokine (C–C motif) ligand 2 [CCL2]). The study objectives were addressed using a descriptive statistical summary and a multivariable logistic regression model constructed in STATA version 12. Results Among the participants eligible for inclusion (n=235), serum IFN-γ level and substance abuse behavior proved to be important delineating characteristics for the detection of comorbid pain. Analysis of inflammatory profile showed IFN-γ to be significantly elevated among patients reporting comorbid pain (odds ratio [OR]: 2.02; 95% confidence interval [CI]: 1.17, 3.50; P=0.01). Patients reporting comorbid pain were also found to have an increase in positive opioid urine screens (OR: 1.02; 95% CI: 1.00, 1.03; P=0.01), indicating an increase in illicit opioid consumption. Conclusion MMT patients with comorbid pain were shown to have elevated IFN-γ and higher rates of continued opioid abuse. The ability to objectively distinguish between patients with comorbid pain may help to both improve the prediction of poor responders to MMT as well as identify treatment approaches such as anti-inflammatory medications as safe alternatives for MMT patients with comorbid pain.


BMJ Open | 2013

Canadian Study of Determinants of Endometabolic Health in ChIlDrEn (CanDECIDE study): a cohort study protocol examining the mechanisms of obesity in survivors of childhood brain tumours

M. Constantine Samaan; Lehana Thabane; Sarah Burrow; Rejane Dillenburg; Katrin Scheinemann

Background Childhood obesity has reached epidemic proportions and is impacting childrens health globally. In adults, obesity is associated with chronic low-grade inflammation that leads to insulin resistance, which is one of the important mechanisms through which dysregulation of metabolism occurs. There is limited information available about the contribution of inflammation to metabolic health in obese children, and how individual and lifestyle factors impact this risk. One of the paediatric groups at risk of higher rates of obesity includes the survivors of childhood brain tumours. The aim of this study was to evaluate the mechanisms that contribute to inflammation in obese survivors of childhood brain tumours. Methods and analysis This is a prospective cohort study. We will recruit lean and obese survivors of childhood brain tumours, and a control group composed of lean and obese children with no history of tumours. We will measure circulating and urinary cytokine levels and cytokine gene expression in monocytes. In addition, the methylation patterns of cytokine genes and that of toll-like receptor genes will be evaluated. These will be correlated with individual and lifestyle factors including age, sex, ethnicity, puberty, body mass index, fasting lipid levels, insulin sensitivity, diet, exercise, sleep, stress and built environment. The sample size calculation showed that we need 25 participants per arm Ethics and dissemination This study has received ethics approval from the institutional review board. Once completed, we will publish this work in peer-reviewed journals and share the findings in presentations and posters in meetings. Discussion This study will permit the interrogation of inflammation as a contributor to obesity and its complications in obese survivors of childhood brain tumours and compare them with lean survivors and lean and obese controls with no history of tumours, which may help identify therapeutic and preventative interventions to combat the rising tide of obesity.


Pediatric Blood & Cancer | 2015

The impact of age and race on longevity in pediatric astrocytic tumors: A population-based study.

M. Constantine Samaan; Noori Akhtar-Danesh

Despite improvements in pediatric brain tumor outcomes, the survivors of childhood brain tumor are burdened by multiple comorbidities. This work reports on the relative survival ratios and excess mortality rate in children with astrocytic tumors over the past four decades.

Collaboration


Dive into the M. Constantine Samaan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Burrow

McMaster University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuan-Wen Wang

McMaster Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge