Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Cristina Nostro is active.

Publication


Featured researches published by M. Cristina Nostro.


Development | 2011

Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells.

M. Cristina Nostro; Farida Sarangi; Shinichiro Ogawa; Audrey Holtzinger; Barbara Corneo; Xueling Li; Suzanne J. Micallef; In-Hyun Park; Christina Basford; Michael B. Wheeler; George Q. Daley; Andrew G. Elefanty; Edouard G. Stanley; Gordon Keller

The generation of insulin-producing β-cells from human pluripotent stem cells is dependent on efficient endoderm induction and appropriate patterning and specification of this germ layer to a pancreatic fate. In this study, we elucidated the temporal requirements for TGFβ family members and canonical WNT signaling at these developmental stages and show that the duration of nodal/activin A signaling plays a pivotal role in establishing an appropriate definitive endoderm population for specification to the pancreatic lineage. WNT signaling was found to induce a posterior endoderm fate and at optimal concentrations enhanced the development of pancreatic lineage cells. Inhibition of the BMP signaling pathway at specific stages was essential for the generation of insulin-expressing cells and the extent of BMP inhibition required varied widely among the cell lines tested. Optimal stage-specific manipulation of these pathways resulted in a striking 250-fold increase in the levels of insulin expression and yielded populations containing up to 25% C-peptide+ cells.


Cell Stem Cell | 2008

Wnt, Activin, and BMP Signaling Regulate Distinct Stages in the Developmental Pathway from Embryonic Stem Cells to Blood

M. Cristina Nostro; Xin Cheng; Gordon Keller; Paul Gadue

The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.


Cell Stem Cell | 2012

Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells

Xin Cheng; Lei Ying; Lin Lu; Aline M. Galvão; Jason A. Mills; Henry C. Lin; Darrell N. Kotton; Steven S. Shen; M. Cristina Nostro; John K. Choi; Mitchell J. Weiss; Deborah L. French; Paul Gadue

The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.


Stem cell reports | 2015

Efficient Generation of NKX6-1+ Pancreatic Progenitors from Multiple Human Pluripotent Stem Cell Lines

M. Cristina Nostro; Farida Sarangi; Chaoxing Yang; Andrew M. Holland; Andrew G. Elefanty; Edouard G. Stanley; Dale L. Greiner; Gordon Keller

Summary Human pluripotent stem cells (hPSCs) represent a renewable source of pancreatic beta cells for both basic research and therapeutic applications. Given this outstanding potential, significant efforts have been made to identify the signaling pathways that regulate pancreatic development in hPSC differentiation cultures. In this study, we demonstrate that the combination of epidermal growth factor (EGF) and nicotinamide signaling induces the generation of NKX6-1+ progenitors from all hPSC lines tested. Furthermore, we show that the size of the NKX6-1+ population is regulated by the duration of treatment with retinoic acid, fibroblast growth factor 10 (FGF10), and inhibitors of bone morphogenetic protein (BMP) and hedgehog signaling pathways. When transplanted into NOD scid gamma (NSG) recipients, these progenitors differentiate to give rise to exocrine and endocrine cells, including monohormonal insulin+ cells. Together, these findings provide an efficient and reproducible strategy for generating highly enriched populations of hPSC-derived beta cell progenitors for studies aimed at further characterizing their developmental potential in vivo and deciphering the pathways that regulate their maturation in vitro.


Biotechnology and Bioengineering | 2012

Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics

Mark Ungrin; Geoff Clarke; Ting Yin; Sylvia Niebrugge; M. Cristina Nostro; Farida Sarangi; Geoffrey A. Wood; Gordon Keller; Peter W. Zandstra

We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation, and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and, with quantitative cell division tracking and fate monitoring, identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion, during directed differentiation, to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.


Journal of Biological Chemistry | 2014

Nodal·Gdf1 Heterodimers with Bound Prodomains Enable Serum-independent Nodal Signaling and Endoderm Differentiation

Christophe Fuerer; M. Cristina Nostro; Daniel B. Constam

Background: To generate active Nodal suited for directed stem cell differentiation, we purified it as a heterodimer with Gdf1. Results: Heterodimeric Nodal·Gdf1 copurified with their cleaved prodomains, potentiated receptor activation and endoderm differentiation, and enabled paracrine signaling in serum-free conditions. Conclusion: Cell-non-autonomous high Nodal signaling thresholds depend on low molecular weight heterodimers. Significance: Nodal·Gdf1 is a new reagent to differentiate endoderm. The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation.


Molecular metabolism | 2015

The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis.

Weijuan Shao; Xiaoquan Xiong; Wilfred Ip; Fenghao Xu; Zhuolun Song; Kejing Zeng; Marcela Hernandez; Tao Liang; Jianping Weng; Herbert Y. Gaisano; M. Cristina Nostro; Tianru Jin

Objective Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. Methods Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by PTRE3G was utilized to generate the transgenic mouse line TCF7L2DNTet. The double transgenic line was created by mating TCF7L2DNTet with Ins2-rtTA, designated as βTCFDN. β-cell specific TCF7L2DN expression was induced in βTCFDN by doxycycline feeding. Results TCF7L2DN expression in Ins-1 cells reduced GSIS, cell proliferation and expression of a battery of genes including incretin receptors and β-cell transcription factors. Inducing TCF7L2DN expression in βTCFDN during adulthood or immediately after weaning generated no or very modest metabolic defect, while its expression during embryonic development by doxycycline feeding in pregnant mothers resulted in significant glucose intolerance associated with altered β-cell gene expression and reduced β-cell mass. Conclusions Our observations support a cell autonomous role for TCF7L2 in pancreatic β-cells suggested by most, though not all, investigations. βTCFDN is a novel model for further exploring the role of TCF7L2 in β-cell genesis and metabolic homeostasis.


Nature Communications | 2017

Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors

Kathryn F. Cogger; Ankit Sinha; Farida Sarangi; Emily C. McGaugh; Diane Saunders; Craig Dorrell; Salvador Mejia-Guerrero; Yasaman Aghazadeh; Jillian L. Rourke; Robert A. Screaton; Markus Grompe; Philip R. Streeter; Alvin C. Powers; Marcela Brissova; Thomas Kislinger; M. Cristina Nostro

PDX1+/NKX6-1+ pancreatic progenitors (PPs) give rise to endocrine cells both in vitro and in vivo. This cell population can be successfully differentiated from human pluripotent stem cells (hPSCs) and hold the potential to generate an unlimited supply of β cells for diabetes treatment. However, the efficiency of PP generation in vitro is highly variable, negatively impacting reproducibility and validation of in vitro and in vivo studies, and consequently, translation to the clinic. Here, we report the use of a proteomics approach to phenotypically characterize hPSC-derived PPs and distinguish these cells from non-PP populations during differentiation. Our analysis identifies the pancreatic secretory granule membrane major glycoprotein 2 (GP2) as a PP-specific cell surface marker. Remarkably, GP2 is co-expressed with NKX6-1 and PTF1A in human developing pancreata, indicating that it marks the multipotent pancreatic progenitors in vivo. Finally, we show that isolated hPSC-derived GP2+ cells generate β-like cells (C-PEPTIDE+/NKX6-1+) more efficiently compared to GP2− and unsorted populations, underlining the potential therapeutic applications of GP2.Pancreatic progenitors (PPs) can be derived from human pluripotent stem cells in vitro but efficiency of differentiation varies, making it hard to sort for insulin-producing cells. Here, the authors use a proteomic approach to identify the secretory granule membrane glycoprotein 2 as a marker for PDX1+/NKX6-1+ PPs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate

Erica P. Cai; Xiaohong Wu; Stephanie A. Schroer; Andrew J. Elia; M. Cristina Nostro; Eldad Zacksenhaus; Minna Woo

Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes.


Journal of Visualized Experiments | 2017

Efficient Differentiation of Pluripotent Stem Cells to NKX6-1+ Pancreatic Progenitors

Emily C. McGaugh; M. Cristina Nostro

Pluripotent stem cells have the ability to self renew and differentiate to multiple lineages, making them an attractive source for the generation of pancreatic progenitor cells that can be used for the study of and future treatment of diabetes. This article outlines a four-stage differentiation protocol designed to generate pancreatic progenitor cells from human embryonic stem cells (hESCs). This protocol can be applied to a number of human pluripotent stem cell (hPSC) lines. The approach taken to generate pancreatic progenitor cells is to differentiate hESCs to accurately model key stages of pancreatic development. This begins with the induction of the definitive endoderm, which is achieved by culturing the cells in the presence of Activin A, basic Fibroblast Growth Factor (bFGF) and CHIR990210. Further differentiation and patterning with Fibroblast Growth Factor 10 (FGF10) and Dorsomorphin generates cells resembling the posterior foregut. The addition of Retinoic Acid, NOGGIN, SANT-1 and FGF10 differentiates posterior foregut cells into cells characteristic of pancreatic endoderm. Finally, the combination of Epidermal Growth Factor (EGF), Nicotinamide and NOGGIN leads to the efficient generation of PDX1+/NKX6-1+ cells. Flow cytometry is performed to confirm the expression of specific markers at key stages of pancreatic development. The PDX1+/NKX6-1+ pancreatic progenitors at the end of stage 4 are capable of generating mature β cells upon transplantation into immunodeficient mice and can be further differentiated to generate insulin-producing cells in vitro. Thus, the efficient generation of PDX1+/NKX6-1+ pancreatic progenitors, as demonstrated in this protocol, is of great importance as it provides a platform to study human pancreatic development in vitro and provides a source of cells with the potential of differentiating to β cells that could eventually be used for the treatment of diabetes.

Collaboration


Dive into the M. Cristina Nostro's collaboration.

Top Co-Authors

Avatar

Gordon Keller

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Farida Sarangi

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Paul Gadue

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Xin Cheng

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianru Jin

University Health Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge