Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tianru Jin is active.

Publication


Featured researches published by Tianru Jin.


Cellular Signalling | 2008

Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of β-catenin

Tianru Jin; I. George Fantus; Jane Sun

The bipartite transcription factor beta-catenin/TCF (cat/TCF) has been recognized as the major effector of the Wnt signaling pathway for more than a decade, and its over-activation has been associated with malignancy such as colon and breast cancer. Extensive examination in different cell lineages has shown that the activity of cat/TCF can be stimulated by mechanisms other than via the Wnt glycoproteins, including the stimulation of beta-cat nuclear translocation and enhanced binding of cat/TCF to the Wnt target gene promoters by insulin and insulin-like growth factor-1 (IGF-1). In addition, the heterotrimeric G proteins of the G(12) subfamily can interact with the cytoplasmic domain of cadherins, resulting in the release of the transcriptional activator beta-cat. Furthermore, certain peptide hormones may stimulate cat/TCF-mediated gene transcription via activation of their corresponding G-protein coupled receptors. Recently, the serine/threonine kinase GSK-3 has been recognized to coordinate with AMP activated protein kinase (AMPK) in phosphorylation and activation of TSC2, the major component of the tumor suppressor complex TSC1/2. Thus, Wnt activation can stimulate protein translation via GSK-3 and TSC1/2 inactivation, followed by mTOR activation. Finally, beta-cat also functions as a pivotal molecule in defense against oxidative stress via serving as a partner of forkhead box O (FOXO) transcription factors. Thus, FOXO proteins, which mainly mediate aging and stress signaling, and TCF factors, which mainly mediate developmental and proliferation signaling, compete for a limited pool of free beta-cat. Insulin and growth factors, on the other hand, control the balance between TCF- and FOXO-mediated gene transcription via phosphorylation and nuclear exclusion of FOXO proteins. These observations provide new insight to understand how Wnt, insulin/growth factors, and FOXOs are involved in versatile physiological events and the development and progression of various human diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2011

GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes.

Nepton Soltani; Hongmin Qiu; Mila Aleksic; Yelena Glinka; Fang Zhao; Rui Liu; Yiming Li; Nina Zhang; Rabindranath Chakrabarti; Tiffany Ng; Tianru Jin; Haibo Zhang; Wei-Yang Lu; Zhong-Ping Feng; Gérald J. Prud'homme; Qinghua Wang

Type 1 diabetes (T1D) is an autoimmune disease characterized by insulitis and islet β-cell loss. Thus, an effective therapy may require β-cell restoration and immune suppression. Currently, there is no treatment that can achieve both goals efficiently. We report here that GABA exerts antidiabetic effects by acting on both the islet β-cells and immune system. Unlike in adult brain or islet α-cells in which GABA exerts hyperpolarizing effects, in islet β-cells, GABA produces membrane depolarization and Ca2+ influx, leading to the activation of PI3-K/Akt–dependent growth and survival pathways. This provides a potential mechanism underlying our in vivo findings that GABA therapy preserves β-cell mass and prevents the development of T1D. Remarkably, in severely diabetic mice, GABA restores β-cell mass and reverses the disease. Furthermore, GABA suppresses insulitis and systemic inflammatory cytokine production. The β-cell regenerative and immunoinhibitory effects of GABA provide insights into the role of GABA in regulating islet cell function and glucose homeostasis, which may find clinical application.


PLOS ONE | 2012

Curcumin Prevents High Fat Diet Induced Insulin Resistance and Obesity via Attenuating Lipogenesis in Liver and Inflammatory Pathway in Adipocytes

Weijuan Shao; Zhiwen Yu; Yuting P Chiang; Yi Yang; Tuanyao Chai; Warren D. Foltz; Huogen Lu; I. George Fantus; Tianru Jin

Background Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages. Methodology and Principal Findings We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue. Conclusions and Significance We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence of stimulation of Wnt signaling in mature adipocytes.


Endocrinology | 2008

Cross Talk between the Insulin and Wnt Signaling Pathways : Evidence from Intestinal Endocrine L Cells

Fenghua Yi; Jane Sun; Gareth E. Lim; I. George Fantus; Patricia L. Brubaker; Tianru Jin

The proglucagon gene (glu) encodes the incretin hormone glucagon-like peptide-1 (GLP-1), produced in the intestinal endocrine L cells. We found previously that the bipartite transcription factor beta-catenin/T cell factor (cat/TCF), the major effector of the canonical Wnt signaling pathway, activates intestinal glu expression and GLP-1 production. We show here that 100 nm insulin stimulated glu expression and enhanced GLP-1 content in the intestinal GLUTag L cell line as well as in primary fetal rat intestinal cell cultures. Increased intestinal glu mRNA expression and GLP-1 content were also observed in vivo in hyperinsulinemic MKR mice. In the GLUTag cells, insulin-induced activation of glu expression occurred through the same TCF site that mediates cat/TCF activation. Phosphatidylinositol 3-kinase inhibition, but not protein kinase B inhibition, attenuated the stimulation by insulin. Furthermore, nuclear beta-catenin content in the intestinal L cells was increased by insulin. Finally, insulin enhanced the binding of TCF-4 and beta-catenin to the TCF site in the glu promoter G2 enhancer element, as determined by quantitative chromatin immunoprecipitation assay. Collectively, these findings indicate that enhancement of beta-catenin nuclear translocation and cat/TCF binding are among the mechanisms underlying cross talk between the insulin and Wnt signaling pathways in intestinal endocrine L cells.


Diabetologia | 2011

Oltipraz upregulates the nuclear respiratory factor 2 alpha subunit (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice

Z. Yu; W. Shao; Y. Chiang; Warren D. Foltz; Z. Zhang; W. Ling; I. G. Fantus; Tianru Jin

Aims/hypothesisWe investigated whether oltipraz, a nuclear respiratory factor 2 alpha subunit (NRF2) activator, improves insulin sensitivity and prevents the development of obesity in mice.MethodsC57BL/6J mice were fed with a low-fat diet (10% of energy as fat), a high-fat diet (HFD) (45% of energy as fat) or a HFD with oltipraz for 28xa0weeks. The effects of oltipraz on body weight, fat content, glucose disposal, insulin signalling, metabolic profiles and endogenous NRF2 functional status in the three groups of mice were investigated.ResultsOltipraz prevented or significantly attenuated the effect of HFD on glucose disposal, body weight and fat gain. Impairment of protein kinase B/Akt phosphorylation in this HFD-fed mouse model in response to intraperitoneal insulin injection was observed in adipose tissue, but not in the muscles, accompanied by inhibition of AMP-activated protein kinase signalling and activation of p70S6 kinase, as well as reduced GLUT4 content. These defects were attenuated by oltipraz administration. Nuclear content of NRF2 in adipose tissue was reduced by HFD feeding, associated with increased Keap1 mRNA expression and reduced production of haem oxygenase-1 and superoxide dismutase, increased protein oxidation, decreased plasma reduced:oxidised glutathione ratio and the appearance of macrophage marker F4/80. These defects were also restored by oltipraz. Finally, oltipraz attenuated HFD-induced inducible nitric oxide synthase overproduction.Conclusions/interpretationImpairment of the endogenous redox system is important in the development of obesity and insulin resistance in chronic HFD feeding. NRF2 activation represents a potential novel approach in the treatment and prevention of obesity and diabetes.


World Journal of Diabetes | 2012

Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice

Hui-Jun He; Guo-Yu Wang; Yuan Gao; Wenhua Ling; Zhi-Wen Yu; Tianru Jin

AIMnTo investigate the signaling mechanism of anti-oxidative action by curcumin and its impact on glucose disposal.nnnMETHODSnMale C57BL/6J mice were fed with either a normal diet (n = 10) or a high fat diet (HFD) (n = 20) to induce obesity and insulin resistance. After 16 wk, 10 HFD-fed mice were further treated with daily curcumin oral gavage at the dose of 50 mg/kg body weight (BW) (HFD + curcumin group). After 15 d of the curcumin supplementation, an intraperitoneal glucose tolerance test was performed. Fasting blood samples were also collected for insulin and glucose measurements. Insulin-sensitive tissues, including muscle, adipose tissue and the liver, were isolated for the assessments of malondialdehyde (MDA), reactive oxygen species (ROS) and nuclear factor erythroid-2-related factor-2 (Nrf2) signaling.nnnRESULTSnWe show here that in a HFD mouse model, short-term curcumin gavage attenuated glucose intolerance without affecting HFD-induced BW gain. Curcumin also attenuated HFD-induced elevations of MDA and ROS in the skeletal muscle, particularly in its mitochondrial fraction, but it had no such an effect in either adipose tissue or the liver of HFD-fed mice. Correspondingly, in skeletal muscle, the levels of total or nuclear content of Nrf2, as well as its downstream target, heme oxygenase-1, were reduced by HFD-feeding. Curcumin intervention dramatically reversed these defects in Nrf2 signaling. Further analysis of the relationship of oxidative stress with glucose level by a regression analysis showed a positive and significant correlation between the area under the curve of a glucose tolerance test with MDA levels either in muscle or muscular mitochondria.nnnCONCLUSIONnThese findings suggest that the short-term treatment of curcumin in HFD-fed mice effectively ameliorates muscular oxidative stress by activating Nrf2 function that is a novel mechanism for its effect in improving glucose intolerance.


Diabetes | 2013

The Wnt Signaling Pathway Effector TCF7L2 Controls Gut and Brain Proglucagon Gene Expression and Glucose Homeostasis

Weijuan Shao; Dingyan Wang; Yu-Ting Chiang; Wilfred Ip; Lingyun Zhu; Fenghao Xu; Joshua Columbus; Denise D. Belsham; David M. Irwin; Haibo Zhang; Xiaoyan Wen; Qinghua Wang; Tianru Jin

The type 2 diabetes risk gene TCF7L2 is the effector of the Wnt signaling pathway. We found previously that in gut endocrine L-cell lines, TCF7L2 controls transcription of the proglucagon gene (gcg), which encodes the incretin hormone glucagon-like peptide-1 (GLP-1). Whereas peripheral GLP-1 stimulates insulin secretion, brain GLP-1 controls energy homeostasis through yet-to-be defined mechanisms. We aim to determine the metabolic effect of a functional knockdown of TCF7L2 by generating transgenic mice that express dominant-negative TCF7L2 (TCF7L2DN) specifically in gcg-expressing cells. The gcg-TCF7L2DN transgenic mice showed reduced gcg expression in their gut and brain, but not in pancreas. Defects in glucose homeostasis were observed in these mice, associated with attenuated plasma insulin levels in response to glucose challenge. The defect in glucose disposal was exacerbated with high-fat diet. Brain Wnt activity and feeding-mediated hypothalamic AMP-activated protein kinase (AMPK) repression in these mice were impaired. Peripheral injection of the cAMP-promoting agent forskolin increased brain β-cat Ser675 phosphorylation and brain gcg expression and restored feeding-mediated hypothalamic AMPK repression. We conclude that TCF7L2 and Wnt signaling control gut and brain gcg expression and glucose homeostasis and speculate that positive cross-talk between Wnt and GLP-1/cAMP signaling is an underlying mechanism for brain GLP-1 in exerting its metabolic functions.


Cell & Bioscience | 2012

The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective.

Wilfred Ip; Yu-ting Alex Chiang; Tianru Jin

The Wnt signaling pathway was initially discovered for its role in tumorigenesis and the development of Drosophila and other eukaryotic organisms. The key effector of this pathway, the bipartite transcription factor β-cat/TCF, is formed by free β-catenin (β-cat) and a TCF protein, including TCF7L2. Extensive recent investigations have highlighted the role of the Wnt signaling pathway in metabolic homeostasis and its implication in diabetes and other metabolic diseases. Genome-wide association studies have shown that several key components of the Wnt signaling pathway are implicated in metabolic homeostasis and the development of type 2 diabetes (T2D). Despite controversial observations regarding the role of Wnt signaling in the development and function of pancreatic islets, the discovery of the association between certain single nucleotide polymorphisms of TCF7L2 and T2D susceptibility has fueled great efforts to explore the role of Wnt signaling in the function of pancreatic β-cells and glucose homeostasis. Here we have introduced our basic understanding of the canonical Wnt signaling pathway, summarized our current knowledge on its implication in metabolic homeostasis and T2D, discussed the work on TCF7L2 as a T2D susceptibility gene, and presented the controversial role of Wnt signaling and TCF7L2 in pancreatic islets as well as their potential metabolic function in other organs. We then expanded our view into the crosstalk among Wnt, insulin and FOXO signaling cascades, which further illustrates the complexity of the Wnt signaling pathway in metabolic homeostasis. Finally, we have presented our perspectives.


Cellular Signalling | 2010

Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic β-cells

Weijuan Shao; Zhiwen Yu; I. George Fantus; Tianru Jin

Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic beta-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic beta-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20mM) on TxNIP level in the pancreatic beta-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating proteasome-dependent TxNIP degradation, since the proteasomal inhibitor MG132, but not the lysosomal inhibitor chloroquine, significantly blocked the repressive effect of forskolin. Furthermore, forskolin enhanced TxNIP ubiquitination. Both PKA inhibition and Epac inhibition partially blocked the repressive effect of forskolin on TxNIP level. In addition, forskolin and Ex-4 protected Ins-1 cells from high glucose-induced apoptotic activity, assessed by measuring caspase 3 activity. Finally, knockdown of TxNIP expression led to reduced caspase 3 expression levels and blunted response to forskolin treatment. We suggest that proteasome-dependent TxNIP degradation is a novel mechanism by which Ex-4-cAMP signaling protects pancreatic beta cells.


American Journal of Physiology-endocrinology and Metabolism | 2012

The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis

Wilfred Ip; Weijuan Shao; Yu-ting Alex Chiang; Tianru Jin

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners. As carriers of TCF7L2 type 2 diabetes risk SNPs demonstrated increased hepatic glucose production, we aimed to determine whether TCF7L2 expression is regulated by nutrient availability and whether TCF7L2 and Wnt regulate hepatic gluconeogenesis. We examined hepatic Wnt activity in the TOPGAL transgenic mouse, assessed hepatic TCF7L2 expression in mice upon feeding, determined the effect of insulin on TCF7L2 expression and β-cat Ser⁶⁷⁵ phosphorylation, and investigated the effect of Wnt activation and TCF7L2 knockdown on gluconeogenic gene expression and glucose production in hepatocytes. Wnt activity was observed in pericentral hepatocytes in the TOPGAL mouse, whereas TCF7L2 expression was detected in human and mouse hepatocytes. Insulin and feeding stimulated hepatic TCF7L2 expression in vitro and in vivo, respectively. In addition, insulin activated β-cat Ser⁶⁷⁵ phosphorylation. Wnt activation by intraperitoneal lithium injection repressed hepatic gluconeogenic gene expression in vivo, whereas lithium or Wnt-3a reduced gluconeogenic gene expression and glucose production in hepatic cells in vitro. Small interfering RNA-mediated TCF7L2 knockdown increased glucose production and gluconeogenic gene expression in cultured hepatocytes. These observations suggest that Wnt signaling and TCF7L2 are negative regulators of hepatic gluconeogenesis, and TCF7L2 is among the downstream effectors of insulin in hepatocytes.

Collaboration


Dive into the Tianru Jin's collaboration.

Top Co-Authors

Avatar

Weijuan Shao

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuolun Song

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Sun

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kejing Zeng

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Nina Zhang

St. Michael's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge