M. D. Hartinger
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. D. Hartinger.
Journal of Geophysical Research | 2014
S. Califf; X. Li; L. W. Blum; A. N. Jaynes; Quintin Schiller; H. Zhao; D. M. Malaspina; M. D. Hartinger; R. A. Wolf; Douglas Edward Rowland; J. R. Wygant; J. W. Bonnell
We use 4 years of Time History of Events and Macroscale Interactions during Substorms (THEMIS) double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the duskside, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the duskside, with a local maximum near L = 4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L = 3 during the most active times. The extensive data set from THEMIS also confirms the day/night asymmetry on the duskside, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawnside near L = 4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L = 7 rather than L = 4. We also investigate the impact of the uncertain boom-shorting factor on the results and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.
Geophysical Research Letters | 2015
M. D. Hartinger; F. Plaschke; M. O. Archer; Daniel T. Welling; Mark B. Moldwin; Aaron J. Ridley
Theoretical work and recent observations suggest that the dayside magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern and southern ionospheres. These magnetopause surface eigenmodes (MSEs) are a potential source of magnetospheric ultralow-frequency (ULF) waves with frequencies less than 2 mHz. Here we use the Space Weather Modeling Framework to study the magnetospheric response to impulsive solar wind dynamic pressure increases. Waves with 1.8 mHz frequency are excited whose global properties are largely consistent with theoretical predictions for MSE and cannot be explained by other known ULF wave modes. These simulation results lead to two key findings: (1) MSE can be sustained in realistic magnetic field geometries with nonzero flow shear and finite current layer thickness at the magnetopause and (2) MSE can seed the growth of tailward propagating surface waves via the Kelvin-Helmholtz instability.
Journal of Geophysical Research | 2014
M. D. Hartinger; Daniel T. Welling; Nicholeen M. Viall; Mark B. Moldwin; Aaron J. Ridley
The Earths magnetosphere supports several types of ultralow frequency (ULF) waves. These include fast mode resonance (FMR): cavity modes, waveguide modes, and tunneling modes/virtual resonance. The magnetopause, often treated as the outer boundary for cavity/waveguide modes in the dayside magnetosphere, is not stationary. A rapidly changing outer boundary condition—e.g., due to rapid magnetopause motion—is not favorable for FMR generation and may explain the sparseness of FMR observations in the outer magnetosphere. We examine how magnetopause motion affects the dayside magnetospheres ability to sustain FMR with idealized Space Weather Modeling Framework (SWMF) simulations using the BATS-R-US global magnetohydrodynamic (MHD) code coupled with the Ridley Ionosphere Model (RIM). We present observations of FMR in BATS-R-US, reproducing results from other global MHD codes. We further show that FMR is present for a wide range of solar wind conditions, even during periods with large and rapid magnetopause displacements. We compare our simulation results to FMR observations in the dayside magnetosphere, finding that FMR occurrence does not depend on solar wind dynamic pressure, which can be used as a proxy for dynamic pressure fluctuations and magnetopause perturbations. Our results demonstrate that other explanations besides a nonstationary magnetopause—such as the inability to detect FMR in the presence of other ULF wave modes with large amplitudes—are required to explain the rarity of FMR observations in the outer magnetosphere.
Geophysical Research Letters | 2015
M. O. Archer; M. D. Hartinger; B. M. Walsh; F. Plaschke; V. Angelopoulos
Coupled fast mode resonances (cFMRs) in the outer magnetosphere, between the magnetopause and a turning point, are often invoked to explain observed discrete frequency field line resonances. We quantify their frequency variability, applying cFMR theory to a realistic magnetic field model and magnetospheric density profiles observed over almost half a solar cycle. Our calculations show that cFMRs are most likely around dawn, since the plasmaspheric plumes and extended plasmaspheres often found at noon and dusk can preclude their occurrence. The relative spread (median absolute deviation divided by the median) in eigenfrequencies is estimated to be 28%, 72%, and 55% at dawn, noon, and dusk, respectively, with the latter two chiefly due to density. Finally, at dawn we show that the observed bimodal density distribution results in bimodal cFMR frequencies, whereby the secondary peaks are consistent with the so-called “CMS” frequencies that have previously been attributed to cFMRs.
Journal of Geophysical Research | 2016
Kazue Takahashi; M. D. Hartinger; D. M. Malaspina; Charles W. Smith; Kiyokazu Koga; H. J. Singer; Dennis Frühauff; D. G. Baishev; A. V. Moiseev; Akimasa Yoshikawa
Ultralow-frequency (ULF) waves generated in the ion foreshock are a well-known source of Pc3–Pc4 waves (7–100 mHz) observed in the dayside magnetosphere. We use data acquired on 10 April 2013 by multiple spacecraft to demonstrate that ULF waves of upstream origin can propagate to the midnight sector of the inner magnetosphere. At 1130–1730 UT on the selected day, the two Van Allen Probes spacecraft and the geostationary ETS-VIII satellite detected compressional 20- to 40-mHz magnetic field oscillations between L ∼ 4 and L ∼ 7 in the midnight sector, along with other spacecraft located closer to noon. Upstream origin of the oscillations is concluded from the wave frequency that matches a theoretical model, globally coherent amplitude modulation, and duskward propagation that is consistent with expected entry of the upstream wave energy through the dawnside flank under the observed interplanetary magnetic field. The oscillations are attributed to magnetohydrodynamic fast mode waves based on their propagation velocity of ∼300 km/s and the relationship between the electric and magnetic field perturbations. The magnitude of the azimuthal wave number is estimated to be ∼30. There is no evidence that the oscillations propagated to the ground in the midnight sector.
Journal of Geophysical Research | 2016
C. Robert Clauer; Zhonghua Xu; M. Maimaiti; J. Michael Ruohoneimi; W. A. Scales; M. D. Hartinger; Michael J. Nicolls; Stephen Kaeppler; F. D. Wilder; Ramon Lopez
A variety of statistical studies have shown that the ionospheric polar potential produced by solar wind-magnetosphere-ionosphere coupling is linear for weak to moderate solar wind driving but becomes nonlinear during periods of very strong driving. It has been shown that this applies to the two-cell convection potential that develops during southward interplanetary magnetic field (IMF) and also to the reverse convection cells that develop during northward IMF. This has been described as polar potential saturation, and it appears to begin when the driving solar wind electric field becomes greater than 3 mV/m. Utilizing measurements from the Resolute Incoherent Scatter Radar (RISR-N), we examine ionospheric data near local noon within the reverse convection cells that developed during a period of very strong northward interplanetary magnetic field (IMF) on 12 September 2014. During this period we measure the electric field within the throat of the reverse convection cells to be near 150 mV/m at a time when the IMF is nearly 28 nT northward. This is far in excess of the 30–40 mV/m expected for polar potential saturation of the reverse convection cells. In fact, the development of the electric field responds linearly to the IMF Bz component throughout this period of extreme driving. The conditions in the solar wind show the solar wind velocity near 600 km/s, number density near 20 ions/cm3, and the Alfvén velocity about 75 km/s giving an Alfvén Mach number of 8. A search of several years of solar wind data shows that these values occur together 0.035% of the time. These conditions imply a high plasma β in the magnetosheath. We believe that condition of high β along with high mass density and a strong merging electric field in the magnetosheath are the significant parameters that produce the linear driving of the ionospheric electric field during this unusual period of extreme solar wind conditions. A discussion of current theories to account for cross-polar cap potential saturation is given with the conclusion that theories that utilize magnetosheath parameters as they affect the reconnection rate appear to be the most relevant to the cross-polar cap potential saturation solution.
Journal of Geophysical Research | 2016
T. Elsden; Andrew N. Wright; M. D. Hartinger
T. Elsden would like to thank STFC for financial support for a doctoral training grant, number AMC3 STFC12. A.N. Wright was supported by STFC grant ST/N000609/1.
Journal of Geophysical Research | 2015
M. D. Hartinger; Mark B. Moldwin; S. Zou; J. W. Bonnell; V. Angelopoulos
Ultralow-frequency (ULF) waves—in particular, Alfven waves–transfer energy into the Earths ionosphere via Joule heating, but it is unclear how much they contribute to global and local heating rates relative to other energy sources. In this study we use Time History of Events and Macroscale Interactions during Substorms satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates, covering latitudes at or below the nominal auroral oval and below the open/closed field line boundary. We find ULF wave Joule heating rates (integrated over 3–30 mHz frequency band) typically range from 0.001 to 1 mW/m2. We compare these rates to empirical models of Joule heating associated with large-scale, static (on ULF wave timescales) current systems, finding that ULF waves nominally contribute little to the global, integrated Joule heating rate. However, there are extreme cases with ULF wave Joule heating rates of ≥10 mW/m2—in these cases, which are more likely to occur when Kp ≥ 3, ULF waves make significant contributions to the global Joule heating rate. We also find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.
Journal of Geophysical Research | 2018
X. Shi; J. M. Ruohoniemi; J. B. H. Baker; D. Lin; E. C. Bland; M. D. Hartinger; W. A. Scales
Ionospheric signatures of ultra-low frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ~6 s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the northern hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field (IMF). For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward IMF, which suggests many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.
Journal of Geophysical Research | 2017
Hyomin Kim; C. Robert Clauer; Andrew J. Gerrard; M. J. Engebretson; M. D. Hartinger; M. R. Lessard; Jürgen Matzka; David G. Sibeck; H. J. Singer; Claudia Stolle; D. R. Weimer; Zhonghua Xu
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°–74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.