Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. E. Zucker is active.

Publication


Featured researches published by M. E. Zucker.


Science | 1992

LIGO: The Laser Interferometer Gravitational-Wave Observatory

Alex Abramovici; W. E. Althouse; Ronald W. P. Drever; Yekta Gursel; S. Kawamura; F. J. Raab; D. H. Shoemaker; L. Sievers; Robert E. Spero; Kip S. Thorne; R. E. Vogt; R. Weiss; S. E. Whitcomb; M. E. Zucker

The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGOs gravitational-wave searches will begin in 1998.


Physics Letters A | 1996

IMPROVED SENSITIVITY IN A GRAVITATIONAL WAVE INTERFEROMETER AND IMPLICATIONS FOR LIGO

Alex Abramovici; W. E. Althouse; Jordan Camp; D. Durance; J. A. Giaime; A. Gillespie; S. Kawamura; A. Kuhnert; T. Lyons; F. J. Raab; R. L. Savage; Deirdre Shoemaker; L. Sievers; Robert E. Spero; R. E. Vogt; R. Weiss; S. E. Whitcomb; M. E. Zucker

Sensitivity enhancements in the laser interferometer gravitational wave observatory (LIGO) projects 40 m interferometer have been achieved through two major instrumental improvements. Improved vibration isolation has reduced the noise due to ground motion. New test masses with less mechanical dissipation were installed to lower the thermal noise associated with mirror vibrations. The minimum interferometer noise (square root of the spectral density of apparent differential displacement) reached 3 x 10^(-19) m/Hz^(1/2) near 450 Hz.


Applied Optics | 2001

Readout and control of a power-recycled interferometric gravitational-wave antenna

Peter Kurt Fritschel; Rolf Bork; Gabriela González; Nergis Mavalvala; Dale Ouimette; H. Rong; Daniel Sigg; M. E. Zucker

Interferometric gravitational-wave antennas are based on Michelson interferometers whose sensitivity to small differential length changes has been enhanced by the addition of multiple coupled optical resonators. The use of optical cavities is essential for reaching the required sensitivity but sets challenges for the control system, which must maintain the cavities near resonance. The goal for the strain sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) is 10(-21) rms, integrated over a 100-Hz bandwidth centered at 150 Hz. We present the major design features of the LIGO length and frequency sensing and control system, which will hold the differential length to within 5 x 10(-14) m of the operating point. We also highlight the restrictions imposed by couplings of noise into the gravitational-wave readout signal and the required immunity against them.


Optics Letters | 2004

Active correction of thermal lensing through external radiative thermal actuation

R. Lawrence; D. J. Ottaway; M. E. Zucker; P. Fritschel

Absorption of laser beam power in optical elements induces thermal gradients that may cause unwanted phase aberrations. In precision measurement applications, such as laser interferometric gravitational-wave detection, corrective measures that require mechanical contact with or attachments to the optics are precluded by noise considerations. We describe a radiative thermal corrector that can counteract thermal lensing and (or) thermoelastic deformation induced by coating and substrate absorption of collimated Gaussian beams. This radiative system can correct anticipated distortions to a high accuracy, at the cost of an increase in the average temperature of the optic. A quantitative analysis and parameter optimization is supported by results from a simplified proof-of-principle experiment, demonstrating the methods feasibility for our intended application.


Applied Optics | 1998

Alignment of an interferometric gravitational wave detector

P. Fritschel; N. Mavalvala; David P. Shoemaker; Daniel Sigg; M. E. Zucker; Gabriela González

Interferometric gravitational wave detectors are designed to detect small perturbations in the relative lengths of their kilometer-scale arms that are induced by passing gravitational radiation. An analysis of the effects of imperfect optical alignment on the strain sensitivity of such an interferometer shows that to achieve maximum strain sensitivity at the Laser Interferometer Gravitational Wave Observatory requires that the angular orientations of the optics be within 10(-8) rad rms of the optical axis, and the beam must be kept centered on the mirrors within 1 mm. In addition, fluctuations in the input laser beam direction must be less than 1.5 x 10(-14) rad/ radicalHz in angle and less than 2.8 x 10(-10) m/ radicalHz in transverse displacement for frequencies f > 150 Hz in order that they not produce spurious noise in the gravitational wave readout channel. We show that seismic disturbances limit the use of local reference frames for angular alignment at a level approximately an order of magnitude worse than required. A wave-front sensing scheme that uses the input laser beam as the reference axis is presented that successfully discriminates among all angular degrees of freedom and permits the implementation of a closed-loop servo control to suppress the environmentally driven angular fluctuations sufficiently.


Physical Review D | 2017

Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914

B. Abbott; R. Abbott; M. R. Abernathy; R. Adhikari; S. Anderson; K. Arai; M. C. Araya; J. C. Barayoga; B. Barish; B. K. Berger; G. Billingsley; J. K. Blackburn; R. Bork; A. F. Brooks; C. Cahillane; T. Callister; C. Cepeda; R. Chakraborty; T. Chalermsongsak; P. Couvares; D. C. Coyne; V. Dergachev; R. W. P. Drever; P. Ehrens; T. Etzel; S. E. Gossan; K. E. Gushwa; E. K. Gustafson; E. D. Hall; A. W. Heptonstall

In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector’s differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector’s gravitational-wave response. The gravitational-wave response model is determined by the detector’s opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.


Classical and Quantum Gravity | 2002

Adaptive thermal compensation of test masses in advanced LIGO

R. Lawrence; M. E. Zucker; P. Fritschel; Phil Marfuta; David P. Shoemaker

As the first generation of laser interferometric gravitational wave detectors nears operation, research and development has begun on increasing the sensitivity of the instrument while utilizing the existing infrastructure. In the laser interferometer gravitational wave observatory (LIGO), significant improvements are being planned for installation around 2007, increasing strain sensitivity through improved suspensions and test mass substrates, active seismic isolation and higher input laser power. Even with the highest quality optics available today, however, finite absorption of laser power within transmissive optics, coupled with the tremendous amount of optical power circulating in various parts of the interferometer, results in critical wavefront deformations which would cripple the performance of the instrument. A method of active wavefront correction via direct thermal actuation on optical elements of the interferometer is discussed. A simple nichrome heating element suspended off the face of an affected optic will, through radiative heating, remove the gross axisymmetric part of the original thermal distortion. A scanning heating laser will then be used to remove any remaining non-axisymmetric wavefront distortion, generated by inhomogeneities in absorption of the substrate, thermal conductivity, etc. A proof-of-principle experiment has been constructed at MIT, selected data of which are presented.


Optics Letters | 2004

Solid-state laser intensity stabilization at the 10-8 level

J. G. Rollins; D. J. Ottaway; M. E. Zucker; Rainer Weiss; Richard Abbott

A high-power, low-noise photodetector, in conjunction with a current shunt actuator, is used in an ac-coupled servo to stabilize the intensity of a 10-W cw Nd:YAG laser. A relative intensity noise of 1 x 10(-8) Hz(-1/2) at 10 Hz is achieved.


Review of Scientific Instruments | 1997

IMPROVED MULTISTAGE WIDE BAND LASER FREQUENCY STABILIZATION

S. Kawamura; Alex Abramovici; M. E. Zucker

Suppression of laser frequency fluctuations is an essential technology for planned interferometric detectors for astrophysical gravitational waves. Because of the low degree of residual frequency noise which is ultimately required, control topologies comprising two or more cascaded loops are favored. One such topology, used in the Laser Interferometer Gravitational-Wave Observatory 40 m interferometer, relied on electro-optic Pockels cell phase correction as a fast actuator for the final stage. This actuation method proved susceptible to spurious amplitude modulation effects, which provided an unintended parasitic feedback path. An alternate arrangement, which achieves comparably effective frequency stabilization without using a phase correcting Pockels cell, was introduced and successfully tested.


Physical Review D | 2017

All-sky search for periodic gravitational waves in the O1 LIGO data

B. Abbott; R. Abbott; R. Adhikari; A. Ananyeva; S. Anderson; S. Appert; K. Arai; M. C. Araya; J. C. Barayoga; B. C. Barish; B. K. Berger; G. Billingsley; J. K. Blackburn; R. Bork; A. F. Brooks; S. Brunett; C. Cahillane; T. A. Callister; C. B. Cepeda; P. Couvares; D. C. Coyne; R. W. P. Drever; P. Ehrens; J. Eichholz; T. Etzel; J. Feicht; E. M. Fries; S. E. Gossan; K. E. Gushwa; E. K. Gustafson

We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8  Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’s first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼4×10−25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ∼1.5×10−25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ∼2.5×10−25.

Collaboration


Dive into the M. E. Zucker's collaboration.

Top Co-Authors

Avatar

P. Fritschel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. H. Shoemaker

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Katsavounidis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. Donovan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mason

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Leo C. Stein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Evans

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Mittleman

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge