Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Felipe-Sotelo is active.

Publication


Featured researches published by M. Felipe-Sotelo.


Langmuir | 2014

Hydrothermal conversion of one-photon-fluorescent poly-(4-vinylpyridine) into two-photon-fluorescent carbon nanodots

Katherine Lawrence; Fengjie Xia; Rory L. Arrowsmith; Haobo Ge; Geoffrey W. Nelson; John S. Foord; M. Felipe-Sotelo; Nicholas D.M. Evans; John M. Mitchels; Stephen E. Flower; Stanley W. Botchway; Daniel Wolverson; Gazi N. Aliev; Tony D. James; Sofia I. Pascu; Frank Marken

A novel two-photon-fluorescent N,O-heteroatom-rich carbon nanomaterial has been synthesized and characterized. The new carbon nanoparticles were produced by hydrothermal conversion from a one-photon-fluorescent poly(4-vinylpyridine) precursor (P4VP). The carbonized particles (cP4VP dots) with nonuniform particle diameter (ranging from sub-6 to 20 nm with some aggregates up to 200 nm) exhibit strong fluorescence properties in different solvents and have also been investigated for applications in cell culture media. The cP4VP dots retain their intrinsic fluorescence in a cellular environment and exhibit an average excited-state lifetime of 2.0 ± 0.9 ns in the cell. The cP4VP dots enter HeLa cells and do not cause significant damage to outer cell membranes. They provide one-photon or two-photon fluorescent synthetic scaffolds for imaging applications and/or drug delivery.


Mineralogical Magazine | 2012

Sorption of radionuclides to a cementitious backfill material under near-field conditions

M. Felipe-Sotelo; J. Hinchliff; Nicholas D.M. Evans; Peter Warwick; David Read

Abstract The sorption behaviour of I-, Cs+ , Ni2+, Eu3+, Th4+ and UO22+ on NRVB (Nirex reference vault backfill) a possible vault backfill, at pH 12.8 was studied. Sorption isotherms generated were compared to results obtained in the presence of cellulose degradation products (CDP). Whereas Cs was not affected by the presence of the organic compounds, a notable reduction in the sorption of Th and Eu to cement was observed. The results also indicated limited removal of Ni from solution (with or without an organic ligand) by sorption, the concentration in solution seemingly being determined solely by solubility processes. In the case of uranium, the presence of CDP increased the sorption to cement by almost one order of magnitude. Further studies into the uptake of CDP by cement are being undertaken to identify the mechanism(s) responsible.


Mineralogical Magazine | 2015

Retention of chlorine-36 by a cementitious backfill

E. Van Es; J. Hinchliff; M. Felipe-Sotelo; A.E. Milodowski; L.P. Field; Nicholas D.M. Evans; David Read

Abstract Radial diffusion experiments have been carried out to assess the migration of 36Cl, as chloride, through a cementitious backfill material. Further experiments in the presence of cellulose degradation products were performed to assess the effect of organic ligands on the extent and rate of chloride diffusion. Results show that breakthrough of 36Cl is dependent on chloride concentration: as the carrier concentration increases, both breakthrough time and the quantity retained by the cement matrix decreases. Experiments in the presence of cellulose degradation products also show a decrease in time to initial breakthrough. However, uptake at various carrier concentrations in the presence of organic ligands converges at 45% of the initial concentration as equilibrium is reached. The results are consistent with organic ligands blocking sites on the cement that would otherwise be available for chloride binding, though further work is required to confirm that this is the case. Post-experimental digital autoradiographs of the cement cylinders, and elemental mapping showed evidence of increased 36Cl activity associated with black ash-like particles in the matrix, believed to correspond to partially hydrated glassy calcium-silicate-sulfate-rich clinker.


Journal of Radioanalytical and Nuclear Chemistry | 2012

Prediction and measurement of complexation of radionuclide mixtures by α-isosaccharinic, gluconic and picolinic acids

Nicholas D.M. Evans; Peter Warwick; M. Felipe-Sotelo; Sarah Vines

The purpose of this study was to investigate the effects of competition between cobalt, europium and strontium for isosaccharinate, gluconate and picolinate. Systems where results indicated that competitive effects were significant have been identified. Thermodynamic calculations were performed for each system for comparison with the experimental results. Some exceptions may be due to precipitation of some species, or presence of species not in databases, or formation of mixed-metal complexes, or sorption to the solid phase(s). In some of the experiments, the complexity of the systems studied caused difficulty in identifying consistent trends. By concentrating on the results for simpler systems (i.e. for solubilities in the presence and absence of organic complexants and with just one competing metal ion), the evidence for competition effects has been investigated. Evidence for solubility enhancement due to organic ligands was apparent in the data for the systems Co with gluconate and Eu with isosaccharinate and gluconate. Of these above cases, the systems in which the effects of the competing ion are consistent with competition were limited to the cases of Eu with isosaccharinate and Sr as the competing ion, and Eu with gluconate and either Co or Sr as the competing ion.


Journal of Hazardous Materials | 2016

Solubility constraints affecting the migration of selenium through the cementitious backfill of a geological disposal facility

M. Felipe-Sotelo; J. Hinchliff; Nicholas D.M. Evans; David Read

This work presents the study of the solubility of selenium under cementitious conditions and its diffusion, as SeO3(2-), through monolithic cement samples. The solubility studies were carried out under alkaline conditions similar to those anticipated in the near-field of a cement-based repository for low- and intermediate-level radioactive waste. Experiments were conducted in NaOH solution, 95%-saturated Ca(OH)2, water equilibrated with a potential backfill material (Nirex reference vault backfill, NRVB) and in solutions containing cellulose degradation products, with and without reducing agents. The highest selenium concentrations were found in NaOH solution. In the calcium-containing solutions, analysis of the precipitates suggests that the solubility controlling phase is Ca2SeO3(OH)2·2H2O, which appears as euhedral rhombic crystals. The presence of cellulose degradation products caused an increase in selenium concentration, possibly due to competitive complexation, thereby, limiting the amount of calcium available for precipitation. Iron coupons had a minor effect on selenium solubility in contrast to Na2S2O4, suggesting that effective reduction of Se(IV) occurs only at Eh values below -300mV. Radial through-diffusion experiments on NRVB and in a fly ash cement showed no evidence of selenium breakthrough after one year. However, autoradiography of the exposed surfaces indicated that some migration had occurred and that selenium was more mobile in the higher porosity backfill than in the fly ash cement.


Journal of Materials Chemistry | 2013

“Hydrothermal wrapping” with poly(4-vinylpyridine) introduces functionality: pH-sensitive core–shell carbon nanomaterials

Katherine Lawrence; Geoffrey W. Nelson; John S. Foord; M. Felipe-Sotelo; Nicholas D.M. Evans; John M. Mitchels; Tony D. James; Fengjie Xia; Frank Marken

Negatively charged carbon nanoparticles (surface-phenylsulfonated) are “wrapped” in a poly(4-vinylpyridine) cationomer and hydrothermally converted into a pH-responsive core–shell nano-composite. With a “thin shell” this nano-material (ca. 20–40 nm diameter) is water-insoluble but readily dispersed into ethanol and deposited onto electrodes. Zeta-potential measurements suggest a point of zero charge (PZC) at ca. pH 4.5 with negative functional groups dominating in the more alkaline range and positive functional groups dominating in the acidic range. XPS data suggest carboxylate and pyridinium-like functional groups. This is further confirmed in voltammetric measurements for adsorbed cations (methylene blue) and adsorbed anions (indigo carmine). The specific capacitance reaches a maximum of 13 F g−1 at the PZC explained here tentatively by a “shell charging” effect within the nanoparticle shell.


Journal of Hazardous Materials | 2016

The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste

M. Felipe-Sotelo; J. Hinchliff; L.P. Field; A.E. Milodowski; J.D. Holt; S.E. Taylor; David Read

This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material.


Mineralogical Magazine | 2015

Inhibition of the formation and stability of inorganic colloids in the alkaline disturbed zone of a cementitious repository

M. Felipe-Sotelo; A.E. Milodowski; Nicholas D.M. Evans

Abstract The generation and stability of inorganic colloids have been studied under hyperalkaline conditions. For the generation of colloids, intact cores of Bromsgrove Sandstone were flushed with simulated cement leachates, and the eluates were ultrafiltered sequentially (12 μm, 1 μm, 0.1 μm and 30 kDa) for the separation of any colloids found. No colloid formation was observed during the experiments; however the analysis by ICPMS of the eluates showed significant increases in Si and Al, indicating silicate mineral dissolution, as well as reduction of the concentration of Ca in the leachates indicating precipitation of secondary Ca-rich phases. Flow experiments with cement leachates spiked with tritiated water showed a noticeable reduction of the porosity of the sandstone as well as changes in the pore distribution. Additional stability experiments were carried out using model silica and Fe2O3 colloids. The experiments indicated that the stability of the colloids was mainly controlled by the concentration of Ca in solution and that both types were unstable under the chemical conditions in the alkaline disturbed zone. The presence of cement additives such as superplasticisers could enhance the stability of the colloids.


Critical Reviews in Environmental Science and Technology | 2018

The Occurrence and Degradation of Aquatic Plastic Litter Based on Polymer Physicochemical Properties: a Review

Tom Bond; Veronica Ferrandiz-Mas; M. Felipe-Sotelo; Erik van Sebille

Abstract The whereabouts of the overwhelming majority of plastic estimated to enter the environment is unknown. This study’s aim was to combine information about the environmental occurrence and physicochemical properties of widespread polymers to predict the fate of aquatic plastic litter. Polyethylene and polypropylene are common in the surface layer and shorelines; polyester and cellulosic fibres in sewage treatment works, estuarine and deep-sea sediments. Overall, non-buoyant polymers are underrepresented on the ocean surface. Three main explanations are proposed for the missing plastic. The first is accumulation of both buoyant and non-buoyant polymers in sewage treatment works, river and estuarine sediments and along shorelines. The second is settling of non-buoyant polymers into the deep-sea. The third is fragmentation of both buoyant and non-buoyant polymers into particles smaller than captured by existing experimental methods. Some isolation techniques may overrepresent larger, buoyant particles; methodological improvements are needed to capture the full size-range of plastic litter. When microplastics fragment they become neutrally-buoyant, thus nanoplastics are potentially widely dispersed in aquatic systems, both horizontally and vertically. Ultimately, over decades or longer, plastics are potentially solubilized and subsequently biodegraded. The rates at which these processes apply to plastic litter in different environmental compartments remain largely unknown.


Journal of Hazardous Materials | 2015

Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI).

M. Felipe-Sotelo; Mark Edgar; T. Beattie; Peter Warwick; Nicholas D.M. Evans; David Read

The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH)2 solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2-4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH)2 (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca(2+). Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes.

Collaboration


Dive into the M. Felipe-Sotelo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Read

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

J. Hinchliff

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

A.E. Milodowski

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

L.P. Field

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge