Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Fox is active.

Publication


Featured researches published by M. Fox.


Publications of the Astronomical Society of the Pacific | 2003

SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey

Carol J. Lonsdale; Harding E. Smith; Michael Rowan-Robinson; Jason A. Surace; D. L. Shupe; Cong Xu; S. J. Oliver; Deborah Lynne Padgett; F. Fang; Tim Conrow; A. Franceschini; Nick Gautier; Matthew Joseph Griffin; Perry B. Hacking; Frank J. Masci; G. Morrison; Joanne O’Linger; Frazer N. Owen; I. Perez-Fournon; M. Pierre; Gordon J. Stacey; Sandra Castro; Maria del Carmen Polletta; D. Farrah; T. H. Jarrett; D. T. Frayer; Brian D. Siana; T. Babbedge; Simon Dye; M. Fox

The largest of the SIRTF Legacy programs, SWIRE will survey 65 sq. deg. in seven high latitude fields selected to be the best wide low-extinction windows into the extragalactic sky. SWIRE will detect millions of spheroids, disks and starburst galaxies to z>3 and will map L* and brighter systems on scales up to 150 Mpc at z∼0.5–1. It will also detect ∼104 low extinction AGN and large numbers of obscured AGN. An extensive program of complementary observations is underway. The data are non-proprietary and will be made available beginning in Spring 2004.


Monthly Notices of the Royal Astronomical Society | 2006

The SCUBA Half-Degree Extragalactic Survey - II. Submillimetre maps, catalogue and number counts

K. Coppin; Edward L. Chapin; A. M. J. Mortier; S. E. Scott; Colin Borys; James Dunlop; M. Halpern; David H. Hughes; Alexandra Pope; D. Scott; S. Serjeant; J. Wagg; D. M. Alexander; Omar Almaini; Itziar Aretxaga; T. Babbedge; Philip Best; A. W. Blain; S. C. Chapman; D. L. Clements; M. Crawford; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; E. Gaztanaga; Walter Kieran Gear; G. L. Granato; T. R. Greve; M. Fox

We present maps, source catalogue and number counts of the largest, most complete and unbiased extragalactic submillimetre survey: the 850-μm SCUBA Half-Degree Extragalactic Survey (SHADES). Using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT), SHADES mapped two separate regions of sky: the Subaru/XMM–Newton Deep Field (SXDF) and the Lockman Hole East (LH). Encompassing 93 per cent of the overall acquired data (i.e. data taken up to 2004 February 1), these SCUBA maps cover 720 arcmin2 with a rms noise level of about 2 mJy and have uncovered >100 submillimetre galaxies. In order to ensure the utmost robustness of the resulting source catalogue, data reduction was independently carried out by four subgroups within the SHADES team, providing an unprecedented degree of reliability with respect to other SCUBA catalogues available from the literature. Individual source lists from the four groups were combined to produce a robust 120-object SHADES catalogue; an invaluable resource for follow-up campaigns aiming to study the properties of a complete and consistent sample of submillimetre galaxies. For the first time, we present deboosted flux densities for each submillimetre galaxy found in a large survey. Extensive simulations and tests were performed separately by each group in order to confirm the robustness of the source candidates and to evaluate the effects of false detections, completeness and flux density boosting. Corrections for these effects were then applied to the data to derive the submillimetre galaxy source counts. SHADES has a high enough number of detected sources that meaningful differential counts can be estimated, unlike most submillimetre surveys which have to consider integral counts. We present differential and integral source number counts and find that the differential counts are better fit with a broken power law or a Schechter function than with a single power law; the SHADES data alone significantly show that a break is required at several mJy, although the precise position of the break is not well constrained. We also find that a 850-μm survey complete down to 2 mJy would resolve 20–30 per cent of the far-infrared background into point sources.


Monthly Notices of the Royal Astronomical Society | 2002

The SCUBA 8-mJy survey — I. Submillimetre maps, sources and number counts

S. E. Scott; M. Fox; James Dunlop; S. Serjeant; J. A. Peacock; Rob J. Ivison; Seb Oliver; Robert G. Mann; A. Lawrence; A. Efstathiou; M. Rowan-Robinson; David H. Hughes; E. N. Archibald; A. W. Blain; Malcolm Longair

We present maps, source lists and derived number counts from the largest, unbiased, extragalactic submillimetre (submm) survey so far undertaken with the SCUBA camera on the James Clerk Maxwell Telescope (JCMT). Our maps are located in two regions of sky (ELAIS N2 and Lockman-Hole E) and cover 260arcmin2 , to a typical rms noise level of sigma 850 ~=2.5mJybeam-1 . We have reduced the data using both the standard JCMT surf procedures, and our own IDL -based pipeline which produces zero-footprint maps and noise images. The uncorrelated noise maps produced by the latter approach have enabled us to apply a maximum likelihood method to measure the statistical significance of each peak in our maps, leading to properly quantified errors on the flux density of all potential sources. We detect 19 sources with signal-to-noise ratios (S/N)>4, and 38 with S/N>3.5. To assess both the completeness of this survey and the impact of source confusion as a function of flux density, we have applied our source-extraction algorithm to a series of simulated images. The result is a new estimate of the submm source counts over the flux-density range S 850 ~=5-15mJy, which we compare with estimates derived by other workers, and with the predictions of a number of models. Our best estimate of the cumulative source count at S 850 >8mJy is per square degree. Assuming that the majority of sources lie at z >1.5, this result implies that the comoving number density of high-redshift galaxies forming stars at a rate in excess of 1000Msolar yr-1 is ~=10-5 Mpc-3 , with only a weak dependence on the precise redshift distribution. This number density corresponds to the number density of massive ellipticals with L >3-4L * in the present-day Universe , and is also the same as the comoving number density of comparably massive, passively evolving objects in the redshift band 1<z <2 inferred from recent surveys of extremely red objects. Thus the bright submm sources uncovered by this survey can plausibly account for the formation of all present-day massive ellipticals. Improved redshift constraints, and ultimately an improved measure of submm source clustering can refine or refute this picture.


Monthly Notices of the Royal Astronomical Society | 2002

Deep radio imaging of the SCUBA 8‐mJy survey fields: submillimetre source identifications and redshift distribution

R. J. Ivison; T. R. Greve; Ian Smail; James Dunlop; Nathan D. Roche; S. E. Scott; Mat J. Page; J. A. Stevens; Omar Almaini; A. W. Blain; Chris J. Willott; M. Fox; David G. Gilbank; Steve Serjeant; David Hughes

The SCUBA 8-mJy survey is the largest submillimetre (submm) extragalactic mapping survey undertaken to date, covering 260arcmin 2 to a 4� detection limit of ≃8mJy at 850µm, centred on the Lockman Hole and ELAIS N2 regions. Here, we present the results of new 1.4-GHz imaging of these fields, of the depth and resolution necessary to reliably identify radio counterparts for 18 of 30 submm sources, with possible detections of a further 25 per cent. Armed with this greatly improved positional information, we present and analyse new optical, near-infrared (IR) and XMM-Newton X-ray imaging to identify optical/IR host galaxies to half of the submm-selected sources in those fields. As many as 15 per cent of the submm sources detected at 1.4GHz are resolved by the 1.4 ′′ beam and a further 25 per cent have more than one radio counterpart, suggesting that radio and submm emission arise from extended starbursts and that interactions are common. We note that less than a quarter of the submm-selected sample would have been recovered by targeting optically faint radio sources, underlining the selective nature of such surveys. At least 60 per cent of the radio-confirmed optical/IR host galaxies appear to be morphologically distorted; many are composite systems — red galaxies with relatively blue companions; just over one half are found to be very red (I −K > 3.3) or extremely red (I −K > 4); contrary to popular belief, most are sufficiently bright to be tackled with spectrographson 8-m telescopes. We find one submm source which is associated with the steep-spectrum lobe of a radio galaxy, at least two more with flatter radio spectra typical of radio-loud active galactic nuclei (AGN), one of them variable. The latter is amongst four sources (≡15 per cent of the full sample) with X-ray emission consistent with obscured AGN, though the AGN would need to be Compton thick to power the observed far-IR luminosity. We exploit our well-matched radio and submm data to estimate the median redshift of the S850µm ∼8mJy submm galaxy population. If the radio/far-IR correlation holds at high redshift, and our sample is unbiased, we derive a conservative limit of ≥2.0, or ≥2.4 using spectral templates more representative of known submm galaxies.


Astronomy and Astrophysics | 2010

HerMES: The SPIRE confusion limit

H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.


Journal of Geophysical Research | 1997

Forcings and chaos in interannual to decadal climate change

James E. Hansen; Makiko Sato; Reto Ruedy; A. Lacis; K. Asamoah; K. Beckford; S. Borenstein; Erik T. Brown; Brian Cairns; Barbara E. Carlson; B. Curran; S. de Castro; Leonard M. Druyan; P. Etwarrow; T. Ferede; M. Fox; Dian J. Gaffen; J. Glascoe; Howard R. Gordon; S. M. Hollandsworth; X. Jiang; Colin A. Johnson; N. Lawrence; Judith Lean; J. Lerner; K. Lo; Jennifer A. Logan; A. Luckett; M. P. McCormick; Richard D. McPeters

We investigate the roles of climate forcings and chaos (unforced variability) in climate change via ensembles of climate simulations in which we add forcings one by one. The experiments suggest that most interannual climate variability in the period 1979–1996 at middle and high latitudes is chaotic. But observed SST anomalies, which themselves are partly forced and partly chaotic, account for much of the climate variability at low latitudes and a small portion of the variability at high latitudes. Both a natural radiative forcing (volcanic aerosols) and an anthropogenic forcing (ozone depletion) leave clear signatures in the simulated climate change that are identified in observations. Pinatubo aerosols warm the stratosphere and cool the surface globally, causing a tendency for regional surface cooling. Ozone depletion cools the lower stratosphere, troposphere and surface, steepening the temperature lapse rate in the troposphere. Solar irradiance effects are small, but our model is inadequate to fully explore this forcing. Well-mixed anthropogenic greenhouse gases cause a large surface wanning that, over the 17 years, approximately offsets cooling by the other three mechanisms. Thus the net calculated effect of all measured radiative forcings is approximately zero surface temperature trend and zero heat storage in the ocean for the period 1979–1996. Finally, in addition to the four measured radiative forcings, we add an initial (1979) disequilibrium forcing of +0.65 W/m2. This forcing yields a global surface warming of about 0.2°C over 1979–1996, close to observations, and measurable heat storage in the ocean. We argue that the results represent evidence of a planetary radiative imbalance of at least 0.5° W/m2; this disequilibrium presumably represents unrealized wanning due to changes of atmospheric composition prior to 1979. One implication of the disequilibrium forcing is an expectation of new record global temperatures in the next few years. The best opportunity for observational confirmation of the disequilibrium is measurement of ocean temperatures adequate to define heat storage.


Astronomy and Astrophysics | 2010

HerMES : SPIRE galaxy number counts at 250, 350, and 500 μm

Seb Oliver; L. Wang; A. J. Smith; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin

Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks.


Monthly Notices of the Royal Astronomical Society | 2003

Starburst and AGN activity in ultraluminous infrared galaxies

D. Farrah; J. Afonso; A. Efstathiou; M. Rowan-Robinson; M. Fox; D. L. Clements

We examine the power source of 41 local Ultraluminous Infrared Galaxies (ULIRGs) using archival infrared (IR) and optical photometry. We fit the observed Spectral Energy Distributions (SEDs) with starburst and AGN components; each component being drawn from a family of templates. We find all of the sample require a starburst, whereas only half require an AGN. In 90% of the sample the starburst provides over half the IR emission, with a mean fractional luminosity of 82%. When combined with other galaxy samples we find that starburst and AGN luminosities correlate over 6 decades in IR luminosity suggesting that a common factor governs both luminosities, plausibly the gas masses in the nuclear regions. We find no trend for increasing fractional AGN luminosity with increasing total luminosity, contrary to previous claims. We find that the mid-IR F7.7/C7.7 line-continuum ratio is no indication of the starburst luminosity, or the fractional AGN luminosity, and therefore that F7.7/C7.7 is not a reliable diagnostic of the power source in ULIRGs. The radio flux correlates with the starburst luminosity, but shows no correlation with the AGN luminosity, in line with previous results. We propose that the scatter in this correlation is due to a skewed starburst IMF and/or relic relativistic electrons from a previous starburst, rather than contamination from an obscured AGN. We show that most ULIRGs undergo multiple starbursts during their lifetime, and by inference that mergers between more than two galaxies may be common amongst ULIRGs. Our results support the evolutionary model for ULIRGs proposed by Farrah et al (2001), where they can follow many different evolutionary paths of starburst and AGN activity in transforming merging spiral galaxies into elliptical galaxies, but that most do not go through an optical QSO phase. The lower level of AGN activity in our local sample than in z � 1 HLIRGs implies that the two samples are distinct populations. We postulate that different galaxy formation processes at high-z are responsible for this difference.


Astronomy and Astrophysics | 2010

HerMES: Far infrared properties of known AGN in the HerMES fields

E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn

Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.


Nature | 2012

The suppression of star formation by powerful active galactic nuclei.

M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear

The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.

Collaboration


Dive into the M. Fox's collaboration.

Top Co-Authors

Avatar

A. W. Blain

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Babbedge

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

D. Farrah

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cava

University of Geneva

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar

C. D. Dowell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge