T. Babbedge
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Babbedge.
Publications of the Astronomical Society of the Pacific | 2003
Carol J. Lonsdale; Harding E. Smith; Michael Rowan-Robinson; Jason A. Surace; D. L. Shupe; Cong Xu; S. J. Oliver; Deborah Lynne Padgett; F. Fang; Tim Conrow; A. Franceschini; Nick Gautier; Matthew Joseph Griffin; Perry B. Hacking; Frank J. Masci; G. Morrison; Joanne O’Linger; Frazer N. Owen; I. Perez-Fournon; M. Pierre; Gordon J. Stacey; Sandra Castro; Maria del Carmen Polletta; D. Farrah; T. H. Jarrett; D. T. Frayer; Brian D. Siana; T. Babbedge; Simon Dye; M. Fox
The largest of the SIRTF Legacy programs, SWIRE will survey 65 sq. deg. in seven high latitude fields selected to be the best wide low-extinction windows into the extragalactic sky. SWIRE will detect millions of spheroids, disks and starburst galaxies to z>3 and will map L* and brighter systems on scales up to 150 Mpc at z∼0.5–1. It will also detect ∼104 low extinction AGN and large numbers of obscured AGN. An extensive program of complementary observations is underway. The data are non-proprietary and will be made available beginning in Spring 2004.
Monthly Notices of the Royal Astronomical Society | 2006
K. Coppin; Edward L. Chapin; A. M. J. Mortier; S. E. Scott; Colin Borys; James Dunlop; M. Halpern; David H. Hughes; Alexandra Pope; D. Scott; S. Serjeant; J. Wagg; D. M. Alexander; Omar Almaini; Itziar Aretxaga; T. Babbedge; Philip Best; A. W. Blain; S. C. Chapman; D. L. Clements; M. Crawford; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; E. Gaztanaga; Walter Kieran Gear; G. L. Granato; T. R. Greve; M. Fox
We present maps, source catalogue and number counts of the largest, most complete and unbiased extragalactic submillimetre survey: the 850-μm SCUBA Half-Degree Extragalactic Survey (SHADES). Using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT), SHADES mapped two separate regions of sky: the Subaru/XMM–Newton Deep Field (SXDF) and the Lockman Hole East (LH). Encompassing 93 per cent of the overall acquired data (i.e. data taken up to 2004 February 1), these SCUBA maps cover 720 arcmin2 with a rms noise level of about 2 mJy and have uncovered >100 submillimetre galaxies. In order to ensure the utmost robustness of the resulting source catalogue, data reduction was independently carried out by four subgroups within the SHADES team, providing an unprecedented degree of reliability with respect to other SCUBA catalogues available from the literature. Individual source lists from the four groups were combined to produce a robust 120-object SHADES catalogue; an invaluable resource for follow-up campaigns aiming to study the properties of a complete and consistent sample of submillimetre galaxies. For the first time, we present deboosted flux densities for each submillimetre galaxy found in a large survey. Extensive simulations and tests were performed separately by each group in order to confirm the robustness of the source candidates and to evaluate the effects of false detections, completeness and flux density boosting. Corrections for these effects were then applied to the data to derive the submillimetre galaxy source counts. SHADES has a high enough number of detected sources that meaningful differential counts can be estimated, unlike most submillimetre surveys which have to consider integral counts. We present differential and integral source number counts and find that the differential counts are better fit with a broken power law or a Schechter function than with a single power law; the SHADES data alone significantly show that a break is required at several mJy, although the precise position of the break is not well constrained. We also find that a 850-μm survey complete down to 2 mJy would resolve 20–30 per cent of the far-infrared background into point sources.
web science | 2007
R. J. Ivison; T. R. Greve; James Dunlop; J. A. Peacock; E. Egami; Ian Smail; E. Ibar; E. van Kampen; I. Aretxaga; T. Babbedge; A. D. Biggs; A. W. Blain; Sydney Chapman; D. L. Clements; K. Coppin; D. Farrah; M. Halpern; David H. Hughes; M. J. Jarvis; T. Jenness; J. R. Jones; A. M. J. Mortier; Seb Oliver; Casey Papovich; P. G. Pérez-González; Alexandra Pope; Steve Rawlings; G. H. Rieke; M. Rowan-Robinson; Richard S. Savage
Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample – source counts and 2D clustering – to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour–colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2–6 arcsec, ~15–50/ sin i kpc at z∼ 2, consistent with early bursts seen in merger simulations.
Astronomy and Astrophysics | 2010
H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.
The Astrophysical Journal | 2006
Maria del Carmen Polletta; Belinda J. Wilkes; Brian D. Siana; Carol J. Lonsdale; Roy E. Kilgard; Harding E. Smith; Dong-Woo Kim; Frazer N. Owen; A. Efstathiou; T. H. Jarrett; Gordon J. Stacey; A. Franceschini; Michael Rowan-Robinson; T. Babbedge; S. Berta; F. Fang; D. Farrah; E. Gonzalez-Solares; G. Morrison; Jason A. Surace; Dave Shupe
Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses.
Astronomy and Astrophysics | 2010
Seb Oliver; L. Wang; A. J. Smith; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks.
Monthly Notices of the Royal Astronomical Society | 2008
Michael Rowan-Robinson; T. Babbedge; Seb Oliver; M. Trichas; S. Berta; Carol J. Lonsdale; Gene Smith; D. L. Shupe; Jason A. Surace; Stephane Arnouts; O. Ilbert; Olivier Le Fevre; A. Afonso-Luis; I. Perez-Fournon; E. Hatziminaoglou; Mari Polletta; D. Farrah; M. Vaccari
We present the SWIRE Photometric Redshift Catalogue 1 025 119 redshifts of unprecedented reliability and of accuracy comparable with or better than previous work. Our methodology is based on fixed galaxy and quasi-stellar object templates applied to data at 0.36–4.5 μm, and on a set of four infrared emission templates fitted to infrared excess data at 3.6–170 μm. The galaxy templates are initially empirical, but are given greater physical validity by fitting star formation histories to them, which also allows us to estimate stellar masses. The code involves two passes through the data, to try to optimize recognition of active galactic nucleus (AGN) dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V , is allowed as a free parameter. The full reduced χ^2_ν (z) distribution is given for each source, so the full error distribution can be used, and aliases investigated. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyse the performance of our method as a function of the number of photometric bands used in the solution and the reduced χ^2_ν . For seven photometric bands (5 optical + 3.6, 4.5 μm), the rms value of (z_(phot)−z_(spec)/(1 +z_(spec) is 3.5 per cent, and the percentage of catastrophic outliers [defined as >15 per cent error in (1 +z)], is ∼1 per cent. These rms values are comparable with the best achieved in other studies, and the outlier fraction is significantly better. The inclusion of the 3.6- and 4.5-μm IRAC bands is crucial in supression of outliers. We discuss the redshift distributions at 3.6 and 24 μm. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution, so the photometric redshifts are a powerful tool for large-scale structure studies. 10 per cent of sources in the SWIRE photometric redshift catalogue have z > 2, and 4 per cent have z > 3, so this catalogue is a huge resource for high-redshift galaxies. A key parameter for understanding the evolutionary status of infrared galaxies is L_(ir)/L_(opt) . For cirrus galaxies this is a measure of the mean extinction in the interstellar medium of the galaxy. There is a population of ultraluminous galaxies with cool dust and we have shown SEDs for some of the reliable examples. For starbursts, we estimate the specific star formation rate, φ_*/M_* . Although the very highest values of this ratio tend to be associated with Arp220 starbursts, by no means all ultraluminous galaxies are. We discuss an interesting population of galaxies with elliptical-like spectral energy distributions in the optical and luminous starbursts in the infrared. For dust tori around type 1 AGN, L_(tor)/L_(opt) is a measure of the torus covering factor and we deduce a mean covering factor of 40 per cent. Our infrared templates also allow us to estimate dust masses for all galaxies with an infrared excess.
Astronomy and Astrophysics | 2010
E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn
Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.
Nature | 2012
M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.
web science | 2010
Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.