Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Galeazzi is active.

Publication


Featured researches published by M. Galeazzi.


The Astrophysical Journal | 2002

A High Spectral Resolution Observation of the Soft X-Ray Diffuse Background with Thermal Detectors

Dan McCammon; R. Almy; E. Apodaca; W. M. Bergmann Tiest; Wei Cui; S. Deiker; M. Galeazzi; Michael Juda; A. Lesser; T. Mihara; Jeffrey Paul Morgenthaler; Wilton T. Sanders; J. Zhang; E. Figueroa-Feliciano; Richard L. Kelley; S. H. Moseley; R. F. Mushotzky; F. S. Porter; C. K. Stahle; Andrew E. Szymkowiak

A high spectral resolution observation of the diffuse X-ray background in the 60–1000 eV energy range has been made using an array of 36 1 mm 2 microcalorimeters flown on a sounding rocket. Detector energy resolution ranged from 5 to 12 eV FWHM, and a composite spectrum of � 1 sr of the background centered at l ¼ 90 � , b ¼þ 60 � was obtained with a net resolution of � 9 eV. The target area includes bright 1 keV regions but avoids Loop I and the North Polar Spur. Lines of C vi ,O vii, and O viii are clearly detected with intensities of 5:4 � 2:3, 4:8 � 0:8, and 1:6 � 0:4 photons cm � 2 s � 1 sr � 1 , respectively. The oxygen lines alone account for a majority of the diffuse background observed in the ROSAT R4 band that is not due to resolved extragalactic discrete sources. We also have a positive detection of the Fe-M line complex near 70 eV at an intensity consistent with previous upper limits that indicate substantial gas-phase depletion of iron. We include a detailed description of the instrument and its detectors. Subject headings: instrumentation: detectors — instrumentation: spectrographs — intergalactic medium — space vehicles: instruments — X-rays: diffuse background — X-rays: ISM


Journal of Applied Physics | 2003

Microcalorimeter and bolometer model

M. Galeazzi; Dan McCammon

The standard nonequilibrium theory of noise in ideal bolometers and microcalorimeters fails to predict the performance of real devices due to additional effects that become important at low temperature. In this paper we extend the theory to include the most important of these effects and find that the performance of microcalorimeters operating at 60 mK can be quantitatively predicted. We give a simple method for doing the necessary calculations, borrowing the block diagram formalism from electronic control theory.


The Astrophysical Journal | 2007

XMM-Newton Observations of the Diffuse X-Ray Background

M. Galeazzi; Anjali Gupta; K. Covey; Eugenio Ursino

We analyze two XMM-Newton observations toward the high-density, high-latitude, neutral hydrogen cloud MBM 20 and a nearby low-density region that we call the Eridanus hole. MBM 20 lies at a distance between 100 and 200 pc from the Sun, and its density is sufficient to shield about 75% of the foreground emission in the keV energy band. The combination of the two observations makes it possible to separate the foreground component, due to the Local Bubble and, possibly, charge exchange within the solar system, from the background component, due primarily to the Galactic halo and unidentified point sources. The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky; the O VII and O VIII intensities are 3.89 ± 0.56 and 0.68 ± 0.24 photons cm-2 s-1 sr-1 for MBM 20, respectively, and 7.26 ± 0.34 and 1.63 ± 0.17 photons cm-2 s-1 sr-1 for the Eridanus hole. The spectra agree with a simple three-component model: one unabsorbed and one absorbed plasma component, and a power law, due to unresolved distant point sources. Assuming that the two plasma components are in thermal equilibrium, we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission, we obtain lower and upper limits for the plasma density of 0.0079 and 0.0095 cm-3 and limits of 16,200 and 19,500 cm-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 to 0.0016 cm-3 and a pressure between 3.8 × 103 and 6.7 × 103 cm-3 K.


Nature | 2014

The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble

M. Galeazzi; Meng Chiao; M. R. Collier; T. E. Cravens; Dimitra Koutroumpa; K. D. Kuntz; Rosine Lallement; S. T. Lepri; D. McCammon; Kelsey Morgan; F. S. Porter; I. P. Robertson; Steven L. Snowden; Nicholas Thomas; Y. Uprety; Eugenio Ursino; B. M. Walsh

The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a ‘local cavity’ filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.


The Astrophysical Journal | 2009

STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS

E. Branchini; Eugenio Ursino; A. Corsi; D. Martizzi; L. Amati; J. W. den Herder; M. Galeazzi; B. Gendre; J. S. Kaastra; L. Moscardini; Fabrizio Nicastro; Takaya Ohashi; Frederik Paerels; Luigi Piro; M. Roncarelli; Yoh Takei; Matteo Viel

We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic errors in the estimates of the gas density and temperature can be corrected for in a robust, largely model-independent fashion. The analysis of the GRB absorption spectra collected in three years would also allow to measure the cosmic mass density of the WHIM with about 15 % accuracy, although this estimate depends on the WHIM model. Our results suggest that GRBs represent a valid, if not preferable, alternative to Active Galactic Nuclei to study the WHIM in absorption. The analysis of the absorption spectra nicely complements the study of the WHIM in emission that the spectrometer proposed for EDGE and XENIA would be able to carry out thanks to its high sensitivity and large field of view.We assess the possibility of detecting and characterizing the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the gamma-ray burst (GRB) afterglows, measured by a microcalorimeter-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast repointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the warm hot intergalactic medium (WHIM). These models predict the correct abundance of O VI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions such as EDGE and XENIA should be able to detect ~60 WHIM absorbers per year through the O VII line. About 45% of these have at least two more detectable lines in addition to O VII that can be used to determine the density and the temperature of the gas. Systematic errors in the estimates of the gas density and temperature can be corrected for in a robust, largely model-independent fashion. The analysis of the GRB absorption spectra collected in three years would also allow to measure the cosmic mass density of the WHIM with ~15% accuracy, although this estimate depends on the WHIM model. Our results suggest that GRBs represent a valid, if not preferable, alternative to active galactic nuclei to study the WHIM in absorption. The analysis of the absorption spectra nicely complements the study of the WHIM in emission that the spectrometer proposed for EDGE and XENIA would be able to carry out thanks to its high sensitivity and large field of view.


Proceedings of SPIE | 2016

The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector

Caroline A. Kilbourne; Joseph S. Adams; Regis P. Brekosky; James A. Chervenak; Meng P. Chiao; Megan E. Eckart; E. Figueroa-Feliciano; M. Galeazzi; Christoph H. Grein; Richard L. Kelley; Daniel P. Kelly; Maurice A. Leutenegger; Dan McCammon; F. Scott Porter; Andrew E. Szymkowiak; Tomomi Watanabe; J. Zhao

The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.


The Astrophysical Journal | 2011

STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION

Yoh Takei; Eugenio Ursino; E. Branchini; Takaya Ohashi; Hajime Kawahara; Kazuhisa Mitsuda; Luigi Piro; A. Corsi; L. Amati; J. W. den Herder; M. Galeazzi; J. S. Kaastra; L. Moscardini; Fabrizio Nicastro; Frederik Paerels; M. Roncarelli; Matteo Viel

We assess the possibility of detecting the warm-hot intergalactic medium in emission and characterizing its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIOS, EDGE, Xenia, and ORIGIN missions, all of which are equipped with microcalorimeter-based detectors. For this purpose, we analyze a large set of mock emission spectra, extracted from a cosmological hydrodynamical simulation. These mock X-ray spectra are searched for emission features showing both the O VII Kα triplet and O VIII Lyα line, which constitute a typical signature of the warm-hot gas. Our analysis shows that 1 Ms long exposures and energy resolution of 2.5 eV will allow us to detect about 400 such features per deg2 with a significance ≥5σ and reveals that these emission systems are typically associated with density ~100 above the mean. The temperature can be estimated from the line ratio with a precision of ~20%. The combined effect of contamination from other lines, variation in the level of the continuum, and degradation of the energy resolution reduces these estimates. Yet, with an energy resolution of 7 eV and all these effects taken into account, one still expects about 160 detections per deg2. These line systems are sufficient for tracing the spatial distribution of the line-emitting gas, which constitute an additional information, independent from line statistics, to constrain the poorly known cosmic chemical enrichment history and the stellar feedback processes.


Physica Status Solidi B-basic Solid State Physics | 2002

1/f Noise and Hot Electron Effects in Variable Range Hopping Conduction

Dan McCammon; M. Galeazzi; D. Liu; Wilton T. Sanders; B. Smith; P. Tan; Regis P. Brekosky; John D. Gygax; Richard L. Kelley; David Brent Mott; F. S. Porter; C. K. Stahle; Carl Michael Stahle; A. E. Szymkowiak

In the course of developing microcalorimeters as detectors for astronomical X-ray spectroscopy, we have undertaken an empirical characterization of non-ideal effects in the doped semiconductor thermometers used with these detectors, which operate at temperatures near 50 mK. We have found three apparently independent categories of such behavior that are apparently intrinsic properties of the variable-range hopping conduction mechanism in these devices: 1/f fluctuations in the resistance, which seems to be a 2D effect; a departure from the ideal coulomb-gap temperature dependence of the resistance at temperatures below T 0 /24; and an electrical nonlinearity that has the time dependence and extra noise that are quantitatively predicted by a simple hot electron model. This work has been done largely with ion-implanted Si:P:B, but similar behaviors have been observed in transmutation doped germanium.


Astronomical Telescopes and Instrumentation | 2003

Next generation of silicon-based x-ray microcalorimeters

C. K. Stahle; Christine A. Allen; Regis P. Brekosky; Gregory Vallee Brown; Jean Cottam; E. Figueroa-Feliciano; M. Galeazzi; John D. Gygax; Mindy Jacobson; Richard L. Kelley; Daihai Liu; Dan McCammon; R.A. McClanahan; S. H. Moseley; F. S. Porter; L. Rocks; Wilton T. Sanders; Carl Michael Stahle; Andrew E. Szymkowiak; Ping Tan; John E. Vaillancourt

After the design of the calorimeter array for the high-resolution x-ray spectrometer (XRS) on the original Astro-E was frozen, new fabrication techniques became available and our understanding of these devices continually increased. We are now able to complete the optimization of this technology and, potentially, to increase the capability of new XRS instrument for Astro-E2, our on-going sounding recket experiments, and possible further applications. The most significant improvement comes from greatly reducing the excess noise of the ion-implanted thermistors by increasing the thickness of the implanted region.


Physics Letters B | 1997

Lithium versus chlorine: for the solution of the solar neutrino problem

M. Galeazzi; G. Gallinaro; F. Gatti; P. Meunier; S. Vitale; A.V Kopylov; V.V Petukhov; E.A Yanovich; G.T Zatsepin

Abstract It is shown that the comparison of the results of the chlorine and lithium detectors can give valuable information for the solution of the solar neutrino problem. A brief description is presented of the prototype of the lithium detector with 300 kg of metal lithium and of the progress in the counting of 7 Be with high efficiency by a cryogenic μ-calorimeter.

Collaboration


Dive into the M. Galeazzi's collaboration.

Top Co-Authors

Avatar

F. S. Porter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan McCammon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. McCammon

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Wilton T. Sanders

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard L. Kelley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

C. K. Stahle

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

R. L. Kelley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge