Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.H. Deighton is active.

Publication


Featured researches published by M.H. Deighton.


Journal of Dairy Science | 2011

Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production

B.F. O’Neill; M.H. Deighton; B.M. O’Loughlin; F.J. Mulligan; T.M. Boland; M. O’Donovan; E. Lewis

The objective of the present study was to compare the enteric methane (CH4) emissions and milk production of spring-calving Holstein-Friesian cows offered either a grazed perennial ryegrass diet or a total mixed ration (TMR) diet for 10 wk in early lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 2 nutritional treatments for 10 wk: 1) grass or 2) TMR. The grass group received an allocation of 17 kg of dry matter (DM) of grass per cow per day with a pre-grazing herbage mass of 1,492 kg of DM/ha. The TMR offered per cow per day was composed of maize silage (7.5 kg of DM), concentrate blend (8.6 kg of DM), grass silage (3.5 kg of DM), molasses (0.7 kg of DM), and straw (0.5 kg of DM). Daily CH4 emissions were determined via the emissions from ruminants using a calibrated tracer technique for 5 consecutive days during wk 4 and 10 of the study. Simultaneously, herbage dry matter intake (DMI) for the grass group was estimated using the n-alkane technique, whereas DMI for the TMR group was recorded using the Griffith Elder feeding system. Cows offered TMR had higher milk yield (29.5 vs. 21.1 kg/d), solids-corrected milk yield (27.7 vs. 20.1 kg/d), fat and protein (FP) yield (2.09 vs. 1.54 kg/d), bodyweight change (0.54 kg of gain/d vs. 0.37 kg of loss/d), and body condition score change (0.36 unit gain vs. 0.33 unit loss) than did the grass group over the course of the 10-wk study. Methane emissions were higher for the TMR group than the grass group (397 vs. 251 g/cow per day). The TMR group also emitted more CH4 per kg of FP (200 vs. 174 g/kg of FP) than did the grass group. They also emitted more CH4 per kg of DMI (20.28 vs. 18.06 g/kg of DMI) than did the grass group. In this study, spring-calving cows, consuming a high quality perennial ryegrass diet in the spring, produced less enteric CH4 emissions per cow, per unit of intake, and per unit of FP than did cows offered a standard TMR diet.


Journal of Dairy Science | 2010

Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period.

C. Wims; M.H. Deighton; E. Lewis; B.M. O’Loughlin; L. Delaby; T.M. Boland; M. O’Donovan

Increasing milk production from pasture while increasing grass dry matter intake (GDMI) and lowering methane (CH(4)) emissions are key objectives of low-cost dairy production systems. It was hypothesized that offering swards of low herbage mass with increased digestibility leads to increased milk output. A grazing experiment was undertaken to investigate the effects of varying levels of HM on CH(4) emissions, GDMI and milk production of grazing dairy cows during the mid-season grazing period (June to July). Prior to the experiment, 46 Holstein-Friesian dairy cows (46 d in milk) were randomly assigned to 1 of 2 treatments (n=23) in a randomized block design. The 2 treatments consisted of 2 target pregrazing HM: 1,000 kg of dry matter (DM)/ha (low herbage mass, LHM) or 2,200 kg of DM/ha (high herbage mass, HHM). The experimental period lasted 2 mo from June 1 until July 31. Within the experimental period, there were 2 measurement periods, measurement 1 (M1) and measurement 2 (M2), where CH(4) emissions, GDMI, and milk production were measured. Mean herbage mass throughout the measurement periods was 1,075 kg of DM/ha and 1,993 kg of DM/ha for the LHM and HHM treatments, respectively. Grass quality in terms of organic matter digestibility was significantly higher for the LHM treatment in M2 (+12 g/kg of DM). In M1, the effect of herbage mass on grass quality was approaching significance in favor of the LHM treatment. Herbage mass did not significantly affect milk production during the measurement periods. Cows grazing the LHM swards had increased GDMI in M1 (+1.5 kg of DM) compared with cows grazing the HHM swards; no difference in GDMI was observed in M2. Grazing HHM swards increased CH(4) production per cow per day (+42 g), per kilogram of milk yield (+3.5 g/kg of milk), per kilogram of milk solids (+47 g/kg of milk solids), and per kilogram of GDMI (+3.1 g/kg of GDMI) in M2. Cows grazing the HHM swards lost a greater proportion of their gross energy intake as CH(4) during both measurement periods (+0.9% and +1% for M1 and M2, respectively). It was concluded that grazing LHM swards would increase grass quality with a concurrent reduction in CH(4) emissions.


Journal of Dairy Science | 2015

Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra

Amélie Vanlierde; Marie-Laure Vanrobays; Frédéric Dehareng; Eric Froidmont; Hélène Soyeurt; S. McParland; E. Lewis; M.H. Deighton; Florian Grandl; Michael Kreuzer; Birgit Gredler; Pierre Dardenne; Nicolas Gengler

The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.


Journal of Dairy Science | 2014

Gastrointestinal tract size, total-tract digestibility, and rumen microflora in different dairy cow genotypes

M. Beecher; F. Buckley; Sinéad M. Waters; T.M. Boland; D. Enriquez-Hidalgo; M.H. Deighton; M. O’Donovan; E. Lewis

The superior milk production efficiency of Jersey (JE) and Jersey × Holstein-Friesian (JE × HF) cows compared with Holstein-Friesian (HF) has been widely published. The biological differences among dairy cow genotypes, which could contribute to the milk production efficiency differences, have not been as widely studied however. A series of component studies were conducted using cows sourced from a longer-term genotype comparison study (JE, JE × HF, and HF). The objectives were to (1) determine if differences exist among genotypes regarding gastrointestinal tract (GIT) weight, (2) assess and quantify whether the genotypes tested differ in their ability to digest perennial ryegrass, and (3) examine the relative abundance of specific rumen microbial populations potentially relating to feed digestibility. Over 3 yr, the GIT weight was obtained from 33 HF, 35 JE, and 27 JE × HF nonlactating cows postslaughter. During the dry period the cows were offered a perennial ryegrass silage diet at maintenance level. The unadjusted GIT weight was heavier for the HF than for JE and JE × HF. When expressed as a proportion of body weight (BW), JE and JE × HF had a heavier GIT weight than HF. In vivo digestibility was evaluated on 16 each of JE, JE × HF, and HF lactating dairy cows. Cows were individually stalled, allowing for the total collection of feces and were offered freshly cut grass twice daily. During this time, daily milk yield, BW, and dry matter intake (DMI) were greater for HF and JE × HF than for JE; milk fat and protein concentration ranked oppositely. Daily milk solids yield did not differ among the 3 genotypes. Intake capacity, expressed as DMI per BW, tended to be different among treatments, with JE having the greatest DMI per BW, HF the lowest, and JE × HF being intermediate. Production efficiency, expressed as milk solids per DMI, was higher for JE than HF and JE × HF. Digestive efficiency, expressed as digestibility of dry matter, organic matter, N, neutral detergent fiber, and acid detergent fiber, was higher for JE than HF. In grazing cows (n=15 per genotype) samples of rumen fluid, collected using a transesophageal sampling device, were analyzed to determine the relative abundance of rumen microbial populations of cellulolytic bacteria, protozoa, and fungi. These are critically important for fermentation of feed into short-chain fatty acids. A decrease was observed in the relative abundance of Ruminococcus flavefaciens in the JE rumen compared with HF and JE × HF. We can deduce from this study that the JE genotype has greater digestibility and a different rumen microbial population than HF. Jersey and JE × HF cows had a proportionally greater GIT weight than HF. These differences are likely to contribute to the production efficiency differences among genotypes previously reported.


Journal of Dairy Science | 2014

Milk production and enteric methane emissions by dairy cows grazing fertilized perennial ryegrass pasture with or without inclusion of white clover.

D. Enriquez-Hidalgo; Trevor J. Gilliland; M.H. Deighton; M. O’Donovan; D. Hennessy

An experiment was undertaken to investigate the effect of white clover inclusion in grass swards (GWc) compared with grass-only (GO) swards receiving high nitrogen fertilization and subjected to frequent and tight grazing on herbage and dairy cow productivity and enteric methane (CH4) emissions. Thirty cows were allocated to graze either a GO or GWc sward (n=15) from April 17 to October 31, 2011. Fresh herbage [16 kg of dry matter (DM)/cow] and 1 kg of concentrate/cow were offered daily. Herbage DM intake (DMI) was estimated on 3 occasions (May, July, and September) during which 17 kg of DM/cow per day was offered (and concentrate supplementation was withdrawn). In September, an additional 5 cows were added to each sward treatment (n=20) and individual CH4 emissions were estimated using the sulfur hexafluoride (SF6) technique. Annual clover proportion (± SE) in the GWc swards was 0.20 ± 0.011. Swards had similar pregrazing herbage mass (1,800 ± 96 kg of DM/ha) and herbage production (13,110 ± 80 kg of DM/ha). The GWc swards tended to have lower DM and NDF contents but greater CP content than GO swards, but only significant differences were observed in the last part of the grazing season. Cows had similar milk and milk solids yields (19.4 ± 0.59 and 1.49 ± 0.049 kg/d, respectively) and similar milk composition. Cows also had similar DMI in the 3 measurement periods (16.0 ± 0.70 kg DM/cow per d). Similar sward and animal performance was observed during the CH4 estimation period, but GWc swards had 7.4% less NDF than GO swards. Cows had similar daily and per-unit-of-output CH4 emissions (357.1 ± 13.6g of CH4/cow per day, 26.3 ± 1.14 g of CH4/kg of milk, and 312.3 ± 11.5 g of CH4/kg of milk solids) but cows grazing GWc swards had 11.9% lower CH4 emissions per unit of feed intake than cows grazing GO swards due to the numerically lower CH4 per cow per day and a tendency for the GWc cows to have greater DMI compared with the GO cows. As a conclusion, under the conditions of this study, sward clover content in the GWc swards was not sufficient to improve overall sward herbage production and quality, or dairy cow productivity. Although GWc cows had a tendency to consume more and emitted less CH4 per unit of feed intake than GO cows, no difference was observed in daily or per-unit-of-output CH4 emissions.


Animal Production Science | 2016

Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes

Amélie Vanlierde; Marie-Laure Vanrobays; Nicolas Gengler; Pierre Dardenne; Eric Froidmont; Hélène Soyeurt; S. McParland; E. Lewis; M.H. Deighton; Michaël Mathot; Frédéric Dehareng

Mitigating the proportion of energy intake lost as methane could improve the sustainability and profitability of dairy production. As widespread measurement of methane emissions is precluded by current in vivo methods, the development of an easily measured proxy is desirable. An equation has been developed to predict methane from the mid-infrared (MIR) spectra of milk within routine milk-recording programs. The main goals of this study were to improve the prediction equation for methane emissions from milk MIR spectra and to illustrate its already available usefulness as a high throughput phenotypic screening tool. A total of 532 methane measurements considered as reference data (430 ± 129 g of methane/day) linked with milk MIR spectra were obtained from 165 cows using the SF6 technique. A first derivative was applied to the MIR spectra. Constant (P0), linear (P1) and quadratic (P2) modified Legendre polynomials were computed from each cows stage of lactation (days in milk), at the day of SF6 methane measurement. The calibration model was developed using a modified partial least-squares regression on first derivative MIR data points × P0, first derivative MIR data points × P1, and first derivative MIR data points × P2 as variables. The MIR-predicted methane emissions (g/day) showed a calibration coefficient of determination of 0.74, a cross-validation coefficient of determination of 0.70 and a standard error of calibration of 66 g/day. When applied to milk MIR spectra recorded in the Walloon Region of Belgium (≈2 000 000 records), this equation was useful to study lactational, annual, seasonal, and regional methane emissions. We conclude that milk MIR spectra has potential to be used to conduct high throughput screening of lactating dairy cattle for methane emissions. The data generated enable monitoring of methane emissions and production characteristics across and within herds. Milk MIR spectra could now be used for widespread screening of dairy herds in order to develop management and genetic selection tools to reduce methane emissions.


Journal of Dairy Science | 2012

The effects of supplementing grazing dairy cows with partial mixed ration on enteric methane emissions and milk production during mid to late lactation1

B.F. O’Neill; M.H. Deighton; B.M. O’Loughlin; N. Galvin; M. O’Donovan; E. Lewis

This study compared the enteric CH(4) emissions and milk production of cows offered various grass-based diets during mid to late lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 3 nutritional treatments for 8 wk: (1) low grass allowance (LGA) + partial mixed ration (PMR), (2) high grass allowance (HGA), or (3) LGA. The PMR group received an allocation of 13.9 kg of grass dry matter (DM)/cow per day and in addition were offered 4.1 kg of PMR DM/cow per day. The HGA group received an allocation of 19.3 kg of grass DM/cow per day and the LGA group received an allocation of 14.4 kg of grass DM/cow per day. The PMR offered was composed of 450 g of maize silage/kg of DM, 450 g of concentrate blend/kg of DM, and 100g of barley straw/kg of DM. Daily CH(4) emissions were determined using the emissions from ruminants using a calibrated tracer technique, using sulfur hexafluoride, for 5 consecutive days during 2 periods. Simultaneously, grass DM intake (DMI) was estimated using the n-alkane technique and the PMR DMI was also recorded. Cows offered PMR had higher DMI than either the HGA or LGA cows (16.5 vs. 14.9 and 13.9 kg of DM/d). The higher DMI of PMR cows increased milk production relative to HGA and LGA cows: milk yield (17.0 vs. 14.6 and 13.1 kg) and fat and protein yield (1.29 vs. 1.14 and 1.04 kg). Daily CH(4) emissions were higher for the PMR group than for the HGA and LGA groups (406 vs. 384 and 349 g/cow per day). The enteric CH(4) emissions intensity per unit of DMI, milk yield, solids-corrected milk yield, and fat and protein yield did not differ between treatments. Effects observed in the PMR treatment were due to an increase in DMI rather than to any nutritional characteristic of the PMR.


Advances in Animal Biosciences | 2010

Effect of sward maturity on the dry matter intake, enteric methane emission and milk solids production of pasture grazed dairy cows

M.H. Deighton; C. Wims; B O'Loughlin; E. Lewis; M. O'Donovan

Introduction Methane (CH4) from ruminant digestion is the largest source of greenhouse gases (GHG) from Irish milk production systems and is estimated to represent 46% of the total GHG cost of milk production (Deighton et al., 2009). Pasture management decisions, such as grazing rotation length, can enable farmers to improve the quality of pasture available to the grazing dairy herd. Any reduction in the CH4 emission from grazed pasture arising from an improvement in quality could be exploited immediately to improve the GHG efficiency of pasture based milk production. This study provides a direct comparison of the pasture intake, CH4 emission and milk production of Holstein Friesian (HF) dairy cows grazing permanent perennial ryegrass (Lolium perenne) pastures of contrasting maturity and pre-grazing herbage mass.


Journal of Dairy Science | 2013

Genetic parameters for methane emissions predicted from milk mid-infrared spectra in dairy cows

Purna Bhadra Kandel; Marie-Laure Vanrobays; Amélie Vanlierde; Frédéric Dehareng; Eric Froidmont; Pierre Dardenne; E. Lewis; F. Buckley; M.H. Deighton; S. McParland; Nicolas Gengler; Hélène Soyeurt


Archive | 2013

Prediction of the individual enteric methane emission of dairy cows from milk mid-infrared spectra

Amélie Vanlierde; Frédéric Dehareng; Eric Froidmont; Pierre Dardenne; Purna Bhadra Kandel; Nicolas Gengler; M.H. Deighton; F. Buckley; E. Lewis; S. McParland

Collaboration


Dive into the M.H. Deighton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge