Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. McParland is active.

Publication


Featured researches published by S. McParland.


BMC Genetics | 2012

Runs of homozygosity and population history in cattle

Deirdre C Purfield; D.P. Berry; S. McParland; Daniel G. Bradley

BackgroundRuns of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds.ResultsAll animals genotyped on the HD panel displayed at least one ROH that was between 1–5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal’s pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples.ConclusionsOur findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.


Journal of Dairy Science | 2011

Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries

Hélène Soyeurt; Frédéric Dehareng; Nicolas Gengler; S. McParland; E. Wall; D.P. Berry; Mike Coffey; Pierre Dardenne

Increasing consumer concern exists over the relationship between food composition and human health. Because of the known effects of fatty acids on human health, the development of a quick, inexpensive, and accurate method to directly quantify the fatty acid (FA) composition in milk would be valuable for milk processors to develop a payment system for milk pertinent to their customer requirements and for farmers to adapt their feeding systems and breeding strategies accordingly. The aim of this study was (1) to confirm the ability of mid-infrared spectrometry (MIR) to quantify individual FA content in milk by using an innovative procedure of sampling (i.e., samples were collected from cows belonging to different breeds, different countries, and in different production systems); (2) to compare 6 mathematical methods to develop robust calibration equations for predicting the contents of individual FA in milk; and (3) to test interest in using the FA equations developed in milk as basis to predict FA content in fat without corrections for the slope and the bias of the developed equations. In total, 517 samples selected based on their spectral variability in 3 countries (Belgium, Ireland, and United Kingdom) from various breeds, cows, and production systems were analyzed by gas chromatography (GC). The samples presenting the largest spectral variability were used to calibrate the prediction of FA by MIR. The remaining samples were used to externally validate the 28 FA equations developed. The 6 methods were (1) partial least squares regression (PLS); (2) PLS+repeatability file (REP); (3) first derivative of spectral data+PLS; (4) first derivative+REP+PLS; (5) second derivative of spectral data+PLS; and (6) second derivative+REP+PLS. Methods were compared on the basis of the cross-validation coefficient of determination (R2cv), the ratio of standard deviation of GC values to the standard error of cross-validation (RPD), and the validation coefficient of determination (R2v). The third and fourth methods had, on average, the highest R2cv, RPD, and R2v. The final equations were built using all GC and the best accuracy was observed for the infrared predictions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9, C18:1 cis, and for some groups of FA studied in milk (saturated, monounsaturated, unsaturated, short-chain, medium-chain, and long-chain FA). These equations showed R2cv greater than 0.95. With R2cv equal to 0.85, the MIR prediction of polyunsaturated FA could be used to screen the cow population. As previously published, infrared predictions of FA in fat are less accurate than those developed from FA content in milk (g/dL of milk) and no better results were obtained by using milk FA predictions if no corrections for bias and slope based on reference milk samples with known contents of FA were used. These results indicate the usefulness of equations with R2cv greater than 95% in milk payment systems and the usefulness of equations with R2cv greater than 75% for animal breeding purposes.


Journal of Dairy Science | 2011

The use of mid-infrared spectrometry to predict body energy status of Holstein cows

S. McParland; Giorgios Banos; E. Wall; Mike Coffey; Hélène Soyeurt; Roel F. Veerkamp; D.P. Berry

Energy balance, especially in early lactation, is known to be associated with subsequent health and fertility in dairy cows. However, its inclusion in routine management decisions or breeding programs is hindered by the lack of quick, easy, and inexpensive measures of energy balance. The objective of this study was to evaluate the potential of mid-infrared (MIR) analysis of milk, routinely available from all milk samples taken as part of large-scale milk recording and milk payment operations, to predict body energy status and related traits in lactating dairy cows. The body energy status traits investigated included energy balance and body energy content. The related traits of body condition score and energy intake were also considered. Measurements on these traits along with milk MIR spectral data were available on 17 different test days from 268 cows (418 lactations) and were used to develop the prediction equations using partial least squares regression. Predictions were externally validated on different independent subsets of the data and the results averaged. The average accuracy of predicting body energy status from MIR spectral data was as high as 75% when energy balance was measured across lactation. These predictions of body energy status were considerably more accurate than predictions obtained from the sometimes proposed fat-to-protein ratio in milk. It is not known whether the prediction generated from MIR data are a better reflection of the true (unknown) energy status than the actual energy status measures used in this study. However, results indicate that the approach described may be a viable method of predicting individual cow energy status for a large scale of application.


Genetics Selection Evolution | 2015

Detection of selection signatures in dairy and beef cattle using high-density genomic information

Fuping Zhao; S. McParland; Francis Kearney; Lixin Du; D.P. Berry

BackgroundArtificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs.ResultsInformation on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection.ConclusionsThis study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.


Journal of Dairy Science | 2014

Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows.

S. McParland; E. Lewis; E. Kennedy; S.G. Moore; B. McCarthy; M. O’Donovan; S.T. Butler; J.E. Pryce; D.P. Berry

Interest is increasing in the feed intake complex of individual dairy cows, both for management and animal breeding. However, energy intake data on an individual-cow basis are not routinely available. The objective of the present study was to quantify the ability of routinely undertaken mid-infrared (MIR) spectroscopy analysis of individual cow milk samples to predict individual cow energy intake and efficiency. Feed efficiency in the present study was described by residual feed intake (RFI), which is the difference between actual energy intake and energy used (e.g., milk production, maintenance, and body tissue anabolism) or supplied from body tissue mobilization. A total of 1,535 records for energy intake, RFI, and milk MIR spectral data were available from an Irish research herd across 36 different test days from 535 lactations on 378 cows. Partial least squares regression analyses were used to relate the milk MIR spectral data to either energy intake or efficiency. The coefficient of correlation (REX) of models to predict RFI across lactation ranged from 0.48 to 0.60 in an external validation data set; the predictive ability was, however, strongest (REX=0.65) in early lactation (<60 d in milk). The inclusion of milk yield as a predictor variable improved the accuracy of predicting energy intake across lactation (REX=0.70). The correlation between measured RFI and measured energy balance across lactation was 0.85, whereas the correlation between RFI and energy balance, both predicted from the MIR spectrum, was 0.65. Milk MIR spectral data are routinely generated for individual cows throughout lactation and, therefore, the prediction equations developed in the present study can be immediately (and retrospectively where MIR spectral data have been stored) applied to predict energy intake and efficiency to aid in management and breeding decisions.


Journal of Dairy Science | 2015

Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra

Amélie Vanlierde; Marie-Laure Vanrobays; Frédéric Dehareng; Eric Froidmont; Hélène Soyeurt; S. McParland; E. Lewis; M.H. Deighton; Florian Grandl; Michael Kreuzer; Birgit Gredler; Pierre Dardenne; Nicolas Gengler

The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.


Animal | 2012

Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis

Hélène Soyeurt; Catherine Bastin; F. G. Colinet; Valérie Arnould; D.P. Berry; E. Wall; Frédéric Dehareng; H. N. Nguyen; Pierre Dardenne; J. Schefers; J. Vandenplas; K. Weigel; Mike Coffey; Léonard Theron; Johann Detilleux; Edouard Reding; Nicolas Gengler; S. McParland

Lactoferrin (LTF) is a milk glycoprotein favorably associated with the immune system of dairy cows. Somatic cell count is often used as an indicator of mastitis in dairy cows, but knowledge on the milk LTF content could aid in mastitis detection. An inexpensive, rapid and robust method to predict milk LTF is required. The aim of this study was to develop an equation to quantify the LTF content in bovine milk using mid-infrared (MIR) spectrometry. LTF was quantified by enzyme-linked immunosorbent assay (ELISA), and all milk samples were analyzed by MIR. After discarding samples with a coefficient of variation between 2 ELISA measurements of more than 5% and the spectral outliers, the calibration set consisted of 2499 samples from Belgium (n = 110), Ireland (n = 1658) and Scotland (n = 731). Six statistical methods were evaluated to develop the LTF equation. The best method yielded a cross-validation coefficient of determination for LTF of 0.71 and a cross-validation standard error of 50.55 mg/l of milk. An external validation was undertaken using an additional dataset containing 274 Walloon samples. The validation coefficient of determination was 0.60. To assess the usefulness of the MIR predicted LTF, four logistic regressions using somatic cell score (SCS) and MIR LTF were developed to predict the presence of mastitis. The dataset used to build the logistic regressions consisted of 275 mastitis records and 13 507 MIR data collected in 18 Walloon herds. The LTF and the interaction SCS × LTF effects were significant (P < 0.001 and P = 0.02, respectively). When only the predicted LTF was included in the model, the prediction of the presence of mastitis was not accurate despite a moderate correlation between SCS and LTF (r = 0.54). The specificity and the sensitivity of models were assessed using Walloon data (i.e. internal validation) and data collected from a research herd at the University of Wisconsin - Madison (i.e. 5886 Wisconsin MIR records related to 93 mastistis events - external validation). Model specificity was better when LTF was included in the regression along with SCS when compared with SCS alone. Correct classification of non-mastitis records was 95.44% and 92.05% from Wisconsin and Walloon data, respectively. The same conclusion was formulated from the Hosmer and Lemeshow test. In conclusion, this study confirms the possibility to quantify an LTF indicator from milk MIR spectra. It suggests the usefulness of this indicator associated to SCS to detect the presence of mastitis. Moreover, the knowledge of milk LTF could also improve the milk nutritional quality.


Journal of Dairy Science | 2014

Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations

J.E. Pryce; J. Johnston; Ben J. Hayes; Goutam Sahana; K.A. Weigel; S. McParland; D. Spurlock; N. Krattenmacher; Richard Spelman; E. Wall; M.P.L. Calus

Combining data from research herds may be advantageous, especially for difficult or expensive-to-measure traits (such as dry matter intake). Cows in research herds are often genotyped using low-density single nucleotide polymorphism (SNP) panels. However, the precision of quantitative trait loci detection in genome-wide association studies and the accuracy of genomic selection may increase when the low-density genotypes are imputed to higher density. Genotype data were available from 10 research herds: 5 from Europe [Denmark, Germany, Ireland, the Netherlands, and the United Kingdom (UK)], 2 from Australasia (Australia and New Zealand), and 3 from North America (Canada and the United States). Heifers from the Australian and New Zealand research herds were already genotyped at high density (approximately 700,000 SNP). The remaining genotypes were imputed from around 50,000 SNP to 700,000 using 2 reference populations. Although it was not possible to use a combined reference population, which would probably result in the highest accuracies of imputation, differences arising from using 2 high-density reference populations on imputing 50,000-marker genotypes of 583 animals (from the UK) were quantified. The European genotypes (n=4,097) were imputed as 1 data set, using a reference population of 3,150 that included genotypes from 835 Australian and 1,053 New Zealand females, with the remainder being males. Imputation was undertaken using population-wide linkage disequilibrium with no family information exploited. The UK animals were also included in the North American data set (n=1,579) that was imputed to high density using a reference population of 2,018 bulls. After editing, 591,213 genotypes on 5,999 animals from 10 research herds remained. The correlation between imputed allele frequencies of the 2 imputed data sets was high (>0.98) and even stronger (>0.99) for the UK animals that were part of each imputation data set. For the UK genotypes, 2.2% were imputed differently in the 2 high-density reference data sets used. Only 0.025% of these were homozygous switches. The number of discordant SNP was lower for animals that had sires that were genotyped. Discordant imputed SNP genotypes were most common when a large difference existed in allele frequency between the 2 imputed genotype data sets. For SNP that had ≥ 20% discordant genotypes, the difference between imputed data sets of allele frequencies of the UK (imputed) genotypes was 0.07, whereas the difference in allele frequencies of the (reference) high-density genotypes was 0.30. In fact, regions existed across the genome where the frequency of discordant SNP was higher. For example, on chromosome 10 (centered on 520,948 bp), 52 SNP (out of a total of 103 SNP) had ≥ 20% discordant SNP. Four hundred and eight SNP had more than 20% discordant genotypes and were removed from the final set of imputed genotypes. We concluded that both discordance of imputed SNP genotypes and differences in allele frequencies, after imputation using different reference data sets, may be used to identify and remove poorly imputed SNP.


Journal of Dairy Science | 2012

Validation of mid-infrared spectrometry in milk for predicting body energy status in Holstein-Friesian cows

S. McParland; Georgios Banos; B. McCarthy; E. Lewis; Michael Coffey; B. O’Neill; M. O’Donovan; E. Wall; D.P. Berry

Cow energy balance is known to be associated with cow health and fertility; therefore, routine access to data on energy balance can be useful in both management and breeding decisions to improve cow performance. The objective of this study was to determine if individual cow milk mid-infrared spectra (MIR) could be useful to predict cow energy balance across contrasting production systems. Direct energy balance was calculated as the differential between energy intake and energy output in milk and maintenance (maintenance was predicted using body weight). Body energy content was calculated from (change in) body weight and body condition score. Following editing, 2,992 morning, 2,742 midday, and 2,989 evening milk MIR records from 564 lactations on 337 Scottish cows, managed in a confinement system on 1 of 2 diets, were available. An additional 844 morning and 820 evening milk spectral records from 338 lactations on 244 Irish cows offered a predominantly grazed grass diet were also available. Equations were developed to predict body energy status using the milk spectral data and milk yield as predictor variables. Several different approaches were used to test the robustness of the equations calibrated in one data set and validated in another. The analyses clearly showed that the variation in the validation data set must be represented in the calibration data set. The accuracy (i.e., square root of the coefficient of multiple determinations) of predicting, from MIR, direct energy balance, body energy content, and energy intake was 0.47 to 0.69, 0.51 to 0.56, and 0.76 to 0.80, respectively. This highlights the ability of milk MIR to predict body energy balance, energy content, and energy intake with reasonable accuracy. Very high accuracy, however, was not expected, given the likely random errors in the calculation of these energy status traits using field data.


Journal of Dairy Science | 2015

Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows

G. Visentin; A. McDermott; S. McParland; D.P. Berry; O.A. Kenny; André Brodkorb; Mark A. Fenelon; M. De Marchi

Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n=713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000cm(-1) were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60min after rennet addition, the developed prediction models may be useful as a screening method, because the concordance correlation coefficient ranged from 0.63 (heat coagulation time prediction model) to 0.84 (pH prediction model) in the external validation.

Collaboration


Dive into the S. McParland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Wall

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge