Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahul Mittal is active.

Publication


Featured researches published by Rahul Mittal.


Journal of Cellular Physiology | 2016

Intricate functions of matrix metalloproteinases in physiological and pathological conditions

Rahul Mittal; Amit P. Patel; Luca H. Debs; Desiree Nguyen; Kunal Patel; M'hamed Grati; Jeenu Mittal; Denise Yan; Prem P. Chapagain; Xue Zhong Liu

Matrix metalloproteinases (MMPs) are a diverse group of proteolytic enzymes and play an important role in the degradation and remodeling of the extracellular matrix (ECM). In normal physiological conditions, MMPs are usually minimally expressed. Despite their low expression, MMPs have been implicated in many cellular processes ranging from embryological development to apoptosis. The activity of MMPs is controlled at three different stages: (1) transcription; (2) zymogen activation; and (3) inhibition of active forms by tissue inhibitor metalloproteinases (TIMPs). They can collectively degrade any component of ECM and basement membrane, and their excessive activity has been linked to numerous pathologies mainly including, but not limited to, tumor invasion and metastasis. The lack of information about several MMPs and the steady stream of new discoveries suggest that there is much more to be studied in this field. In particular, there is a need for controlling their expression in disease states. Various studies over the past 30 years have found that each MMP has a specific mode of activation, action, and inhibition. Drugs specifically targeting individual MMPs could revolutionize the treatment of a great number of health conditions and tremendously reduce their burden. In this review article, we have summarized the recent advances in understanding the role of MMPs in physiological and pathological conditions. J. Cell. Physiol. 231: 2599–2621, 2016.


Human Molecular Genetics | 2015

A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation

M'hamed Grati; Imen Chakchouk; Qi Ma; Mariem Bensaid; Alexandra DeSmidt; Nouha Turki; Denise Yan; Aissette Baanannou; Rahul Mittal; Nabil Driss; Susan H. Blanton; Amjad Farooq; Zhongmin Lu; Xue Zhong Liu; Saber Masmoudi

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


Proceedings of the National Academy of Sciences of the United States of America | 2014

FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing

Oscar Diaz-Horta; Asli Subasioglu-Uzak; M’hamed Grati; Alexandra DeSmidt; Joseph Foster; Lei Cao; Guney Bademci; Suna Tokgoz-Yilmaz; Duygu Duman; F. Basak Cengiz; Clemer Abad; Rahul Mittal; Susan H. Blanton; Xue Zhong Liu; Amjad Farooq; Katherina Walz; Zhongmin Lu; Mustafa Tekin

Significance Concerted action of thousands of proteins is required for the inner ear to convert acoustic waves into electrical signals for hearing. Many of these proteins are currently unknown. This study uses a genetic approach to identify FAM65B as a gene mutated in a family with sensorineural hearing loss. Characterization of FAM65B shows that it is a component of the plasma membrane of the stereocilia hair bundle, the essential organelle in which electrical signals originate in the inner ear. Thus, FAM65B is a previously unrecognized component of the inner ear that is crucial for hearing. In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing.


Journal of Medical Microbiology | 2015

Current concepts in the pathogenesis and treatment of chronic suppurative otitis media.

Rahul Mittal; Christopher V. Lisi; Robert Gerring; Jeenu Mittal; Kalai Mathee; Giri Narasimhan; Rajeev K. Azad; Qi Yao; M'hamed Grati; Denise Yan; Adrien A. Eshraghi; Simon I. Angeli; Fred F. Telischi; Xuezhong Liu

Otitis media (OM) is an inflammation of the middle ear associated with infection. Despite appropriate therapy, acute OM (AOM) can progress to chronic suppurative OM (CSOM) associated with ear drum perforation and purulent discharge. The effusion prevents the middle ear ossicles from properly relaying sound vibrations from the ear drum to the oval window of the inner ear, causing conductive hearing loss. In addition, the inflammatory mediators generated during CSOM can penetrate into the inner ear through the round window. This can cause the loss of hair cells in the cochlea, leading to sensorineural hearing loss. Pseudomonas aeruginosa and Staphylococcus aureus are the most predominant pathogens that cause CSOM. Although the pathogenesis of AOM is well studied, very limited research is available in relation to CSOM. With the emergence of antibiotic resistance as well as the ototoxicity of antibiotics and the potential risks of surgery, there is an urgent need to develop effective therapeutic strategies against CSOM. This warrants understanding the role of host immunity in CSOM and how the bacteria evade these potent immune responses. Understanding the molecular mechanisms leading to CSOM will help in designing novel treatment modalities against the disease and hence preventing the hearing loss.


Journal of Cellular Physiology | 2017

Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis

Rahul Mittal; Luca H. Debs; Amit P. Patel; Desiree Nguyen; Kunal Patel; Gregory O'Connor; M'hamed Grati; Jeenu Mittal; Denise Yan; Adrien A. Eshraghi; Sapna K. Deo; Sylvia Daunert; Xue Zhong Liu

Neurotransmitters, including catecholamines and serotonin, play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the “fight or flight” response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in GI and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, GI innate immune system, and the microbiome. Furthermore, in pathological states, such as inflammatory bowel disease (IBD) and Parkinsons disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of GI symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state‐of‐the‐art research and literature regarding the role of neurotransmitters in regulation of normal GI physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. J. Cell. Physiol. 232: 2359–2372, 2017.


PLOS ONE | 2014

In Vitro Interaction of Pseudomonas aeruginosa with Human Middle Ear Epithelial Cells

Rahul Mittal; M’hamed Grati; Robert Gerring; Patricia Blackwelder; Denise Yan; Jian-Dong Li; Xue Zhong Liu

Background Otitis media (OM) is an inflammation of the middle ear which can be acute or chronic. Acute OM is caused by Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa is a leading cause of chronic suppurative otitis media (CSOM). CSOM is a chronic inflammatory disorder of the middle ear characterized by infection and discharge. The survivors often suffer from hearing loss and neurological sequelae. However, no information is available regarding the interaction of P. aeruginosa with human middle ear epithelial cells (HMEECs). Methodology and Findings In the present investigation, we demonstrate that P. aeruginosa is able to enter and survive inside HMEECs via an uptake mechanism that is dependent on microtubule and actin microfilaments. The actin microfilament disrupting agent as well as microtubule inhibitors exhibited significant decrease in invasion of HMEECs by P. aeruginosa. Confocal microscopy demonstrated F-actin condensation associated with bacterial entry. This recruitment of F-actin was transient and returned to normal distribution after bacterial internalization. Scanning electron microscopy demonstrated the presence of bacteria on the surface of HMEECs, and transmission electron microscopy confirmed the internalization of P. aeruginosa located in the plasma membrane-bound vacuoles. We observed a significant decrease in cell invasion of OprF mutant compared to the wild-type strain. P. aeruginosa induced cytotoxicity, as demonstrated by the determination of lactate dehydrogenase levels in culture supernatants of infected HMEECs and by a fluorescent dye-based assay. Interestingly, OprF mutant showed little cell damage compared to wild-type P. aeruginosa. Conclusions and Significance This study deciphered the key events in the interaction of P. aeruginosa with HMEECs in vitro and highlighted the role of bacterial outer membrane protein, OprF, in this process. Understanding the molecular mechanisms in the pathogenesis of CSOM will help in identifying novel targets to design effective therapeutic strategies and to prevent hearing loss.


Journal of Genetics and Genomics | 2014

Immunity Genes and Susceptibility to Otitis Media: A Comprehensive Review

Rahul Mittal; Giannina Robalino; Robert Gerring; Brandon Chan; Denise Yan; M'hamed Grati; Xue Zhong Liu

Otitis media (OM) is a middle ear infection associated with inflammation and pain. This disease frequently afflicts humans and is the major cause of hearing loss worldwide. OM continues to be one of the most challenging diseases in the medical field due to its diverse host targets and wide range of clinical manifestations. Substantial morbidity associated with OM is further exacerbated by high frequency of recurrent infections leading to chronic suppurative otitis media (CSOM). Children have greater susceptibility to, and thus, suffer most frequently from OM, which can cause significant deterioration in quality of life. Genetic factors have been demonstrated, in large part by twin and family studies, to be key determinants of OM susceptibility. In this review, we summarize the current knowledge on immunity genes and selected variants that have been associated with predisposition to OM. In particular, polymorphisms in innate immunity and cytokine genes have been strongly linked with the risk of developing OM. Future studies employing state-of-the-art technologies, including next-generation sequencing (NGS), will aid in the identification of novel genes associated with susceptibility to OM. This, in turn, will open up avenues for identifying high-risk individuals and designing novel therapeutic strategies based on precise targeting of these genes.


Disease Markers | 2015

Association of PRPS1 Mutations with Disease Phenotypes

Rahul Mittal; Kunal Patel; Jeenu Mittal; Brandon Chan; Denise Yan; M'hamed Grati; Xue Zhong Liu

Phosphoribosylpyrophosphate synthetase 1 (PRPS1) codes for PRS-I enzyme that catalyzes the first step of nucleotide synthesis. PRPS1 gene mutations have been implicated in a number of human diseases. Recently, new mutations in PRPS1 have been identified that have been associated with novel phenotypes like diabetes insipidus expanding the spectrum of PRPS1-related diseases. The purpose of this review is to evaluate current literature on PRPS1-related syndromes and summarize potential therapies. The overexpression of PRPS1 results in PRS-I superactivity resulting in purine overproduction. Patients with PRS-I superactivity demonstrate uric acid overproduction, hypotonia, ataxia, neurodevelopment abnormalities, and postlingual hearing impairment. On the other hand, decreased activity leads to X-linked nonsyndromic sensorineural deafness (DFNX-2), Charcot-Marie-Tooth disease-5 (CMTX5), and Arts syndrome depending on the residual activity of PRS-I. Mild PRS-I deficiency (DFNX-2) results in non-syndromic progressive hearing loss whereas moderate PRS-I deficiency (CMTX5) and severe PRS-I deficiency (Arts syndrome) present with peripheral or optic neuropathy, prelingual progressive sensorineural hearing loss, and central nervous system impairment. Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in patients with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients and open new avenues of therapeutic intervention.


Journal of Cellular Physiology | 2017

Indispensable Role of Ion Channels and Transporters in the Auditory System

Rahul Mittal; Mayank Aranke; Luca H. Debs; Desiree Nguyen; Amit P. Patel; M'hamed Grati; Jeenu Mittal; Denise Yan; Prem P. Chapagain; Adrien A. Eshraghi; Xue Zhong Liu

Ear is a complex system where appropriate ionic composition is essential for maintaining the tissue homeostasis and hearing function. Ion transporters and channels present in the auditory system plays a crucial role in maintaining proper ionic composition in the ear. The extracellular fluid, called endolymph, found in the cochlea of the mammalian inner ear is particularly unique due to its electrochemical properties. At an endocochlear potential of about +80 mV, signaling initiated by acoustic stimuli at the level of the hair cells is dependent on the unusually high potassium (K+) concentration of endolymph. There are ion channels and transporters that exists in the ear to ensure that K+ is continually being cycled into the stria media endolymph. This review is focused on the discussion of the molecular and genetic basis of previously and newly recognized ion channels and transporters that support sensory hair cell excitation based on recent knock‐in and knock‐out studies of these channels. This article also addresses the molecular and genetic defects and the pathophysiology behind Menieres disease as well as how the dysregulation of these ion transporters can result in severe defects in hearing or even deafness. Understanding the role of ion channels and transporters in the auditory system will facilitate in designing effective treatment modalities against ear disorders including Menieres disease and hearing loss. J. Cell. Physiol. 232: 743–758, 2017.


Human Genetics | 2016

A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60.

Mariem Ben Said; M’hamed Grati; Takahiro Ishimoto; Bing Zou; Imen Chakchouk; Qi Ma; Qi Yao; Bouthaina Hammami; Denise Yan; Rahul Mittal; Noritaka Nakamichi; Abdelmonem Ghorbel; Lingling Neng; Mustafa Tekin; Xiaorui Shi; Yukio Kato; Saber Masmoudi; Zhongmin Lu; Mounira Hmani; Xuezhong Liu

The high prevalence/incidence of hearing loss (HL) in humans makes it the most common sensory defect. The majority of the cases are of genetic origin. Non-syndromic hereditary HL is extremely heterogeneous. Genetic approaches have been instrumental in deciphering genes that are crucial for auditory function. In this study, we first used NADf chip to exclude the implication of known North-African mutations in HL in a large consanguineous Tunisian family (FT13) affected by autosomal recessive non-syndromic HL (ARNSHL). We then performed genome-wide linkage analysis and assigned the deafness gene locus to ch:5q23.2-31.1, corresponding to the DFNB60 ARNSHL locus. Moreover, we performed whole exome sequencing on FT13 patient DNA and uncovered amino acid substitution p.Cys113Tyr in SLC22A4, a transporter of organic cations, cosegregating with HL in FT13 and therefore the cause of ARNSHL DFNB60. We also screened a cohort of small Tunisian HL families and uncovered an additional deaf proband of consanguineous parents that is homozygous for p.Cys113Tyr carried by the same microsatellite marker haplotype as in FT13, indicating that this mutation is ancestral. Using immunofluorescence, we found that Slc22a4 is expressed in stria vascularis (SV) endothelial cells of rodent cochlea and targets their apical plasma membrane. We also found Slc22a4 transcripts in our RNA-seq library from purified primary culture of mouse SV endothelial cells. Interestingly, p.Cys113Tyr mutation affects the trafficking of the transporter and severely alters ergothioneine uptake. We conclude that SLC22A4 is an organic cation transporter of the SV endothelium that is essential for hearing, and its mutation causes DFNB60 form of HL.

Collaboration


Dive into the Rahul Mittal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prem P. Chapagain

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge