Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Ichimura is active.

Publication


Featured researches published by M. Ichimura.


Astroparticle Physics | 2001

Composition and energy spectra of cosmic ray primaries in the energy range 1013 - 1015 eV/particle observed by Japanese-Russian joint balloon experiment

A.V. Apanasenko; V.A. Sukhadolskaya; V. A. Derbina; M. Fujii; V.I. Galkine; G.G. Getsov; M. Hareyama; M. Ichimura; S. Ito; Eiji Kamioka; T. Kitami; T. Kobayashi; V.D. Kolesnikov; V. V. Kopenkin; N.M. Kotunova; S. Kuramata; Y. Kuriyama; V.I. Lapshin; A.K. Managadze; H. Matsutani; H. Mikami; N. P. Misnikova; R.A. Mukhamedshin; M. Namiki; H. Nanjo; S. N. Nazarov; S.I. Nikolsky; T. Ohe; S. Ohta; V. I. Osedlo

Abstract We report experimental results obtained by the emulsion chambers on board of the long duration balloon. We have been carrying out the trans-Siberian-continental balloon flight since 1995, and the results from 1995 to 1996 experiments are presented here. Total exposure of these two years amounts to 231.5 m 2 h at the average altitude of ∼32 km. The energy range covers 10–500 TeV for proton-primary, 3–70 TeV/n for helium-primary, and 1–5 TeV/n for Fe-group ( Z =26–28), though statistics of heavy components is not yet enough. Our preliminary data show that the spectra of the proton and the helium have nearly the same power indices ∼2.80, while those of heavier ones become gradually harder as the mass gets heavier, for instance the index is ∼2.70 for CNO-group and ∼2.55 for Fe-group. It is remarkable that a very high energy proton with multi-PeV is detected in 1995 experiment, and the estimated flux of this event coincides with a simple extrapolation from the energy spectrum with the power index 2.8 observed in the range 10–500 TeV. It indicates that there is no spectral break at around 100 TeV, in contrast to the maximum energy predicted by the current shock-wave acceleration model. This evidence requires some modification on the acceleration and/or propagation mechanism. Also we present all-particle spectrum and the average primary mass in the energy range 20–1000 TeV/particle. Our preliminary data show no drastic change in mass composition over the wide energy range, at least up to 1 PeV/particle, though the statistics is not yet enough to confirm it concretely. The flight performance and the procedure of the analysis, particularly the energy determination methods and the detection efficiency calculation are also given.


The Astrophysical Journal | 2005

Cosmic-Ray Spectra and Composition in the Energy Range of 10-1000 TeV per Particle Obtained by the RUNJOB Experiment

V. A. Derbina; V. I. Galkin; Makoto Hareyama; Y. Hirakawa; Y. Horiuchi; M. Ichimura; N. Inoue; Eiji Kamioka; Tamaki Kobayashi; V. Kopenkin; S. Kuramata; A.K. Managadze; H. Matsutani; N. P. Misnikova; R. A. Mukhamedshin; S. Nagasawa; R. Nakano; Michiyoshi Namiki; M. Nakazawa; H. Nanjo; S. N. Nazarov; S. Ohata; H. Ohtomo; V. I. Osedlo; D. S. Oshuev; P. A. Publichenko; I.V. Rakobolskaya; T. Roganova; C. Saito; G. P. Sazhina

This is a full report on the cosmic-ray spectra and composition obtained by the emulsion chambers on board 10 long-duration balloons, launched from Kamchatka between 1995 and 1999. The total exposure of these campaigns amounts to 575 m2 hr, with an average flight altitude of ~32 km. We present final results on the energy spectra of two light elements, protons and helium nuclei, and on those of three heavy-element groups, CNO, NeMgSi, and Fe, covering the very high energy region of 10-1000 TeV particle-1. We additionally present the secondary/primary ratio, the all-particle spectrum, and the average mass of the primary cosmic rays. We find that our proton spectrum is in good agreement with other results, but the intensity of the helium component is nearly half that obtained by JACEE and SOKOL. The slopes of the spectra of these two elements obtained from RUNJOB data are almost parallel, with values of 2.7-2.8 in the energy range of 10-500 TeV nucleon-1. RUNJOB heavy-component spectra are in agreement with the extrapolation from those at lower energies obtained by CRN (Chicago group), monotonically decreasing with energy. We have also observed secondary components, such as the LiBeB group and the sub-Fe group, and present the secondary/primary ratio in the TeV nucleon-1 region. We determine the all-particle spectrum and the average mass of the primary cosmic rays in the energy region of 20-1000 TeV particle-1. The intensity of the RUNJOB all-particle spectrum is 40%-50% less than those obtained by JACEE and SOKOL, and the RUNJOB average mass remains almost constant up to ~1 PeV.


The Astrophysical Journal | 2008

Composition of Primary Cosmic-Ray Nuclei at High Energies

M. Ave; P. J. Boyle; F. Gahbauer; C. Höppner; J.R. Hörandel; M. Ichimura; D. Müller; A. Romero-Wolf

The TRACER instrument (Transition Radiation Array for Cosmic Energetic Radiation) has been developed for direct measurements of the heavier primary cosmic-ray nuclei at high energies. The instrument had a successful long-duration balloon flight in Antarctica in 2003. The detector system and measurement process are described, details of the data analysis are discussed, and the individual energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe (nuclear charge Z = 8-26) are presented. The large geometric factor of TRACER and the use of a transition radiation detector make it possible to determine the spectra up to energies in excess of 1014 eV per particle. A power-law fit to the individual energy spectra above 20 GeV amu−1 exhibits nearly the same spectral index (2.65 ± 0.05) for all elements, without noticeable dependence on the elemental charge Z.


Physical Review Letters | 2017

Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station

O. Adriani; Yosui Akaike; Katsuaki Asano; Y. Asaoka; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; P. Brogi; J. H. Buckley; N. Cannady; G. Castellini; C. Checchia; Michael L. Cherry; G. Collazuol; V. Di Felice; Ken Ebisawa; H. Fuke; T. G. Guzik; T. Hams; Makoto Hareyama; N. Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; W. Ishizaki; M. H. Israel; A. Javaid; K. Kasahara

First results of a cosmic-ray electron and positron spectrum from 10xa0GeV to 3xa0TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30xa0GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100xa0GeV requires further investigation with increased statistics and refined data analysis.


The Astrophysical Journal | 2016

CALET UPPER LIMITS on X-RAY and GAMMA-RAY COUNTERPARTS of GW151226

O. Adriani; Y. Akaike; Katsuaki Asano; Y. Asaoka; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; P. Brogi; J. H. Buckley; N. Cannady; G. Castellini; C. Checchia; Michael L. Cherry; G. Collazuol; V. Di Felice; Ken Ebisawa; H. Fuke; T. G. Guzik; T. Hams; M. Hareyama; Nobuyuki Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; W. Ishizaki; M. H. Israel; A. Javaid; K. Kasahara

We present upper limits in the hard X-ray and gamma-ray bands at the time of the LIGO gravitational-wave event GW 151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ~1 GeV up to 10 TeV with a field of view of ~2 sr. The CALET gamma-ray burst monitor (CGBM) views ~3 sr and ~2pi sr of the sky in the 7 keV - 1 MeV and the 40 keV - 20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW 151226 sky localization probability in the 7 keV - 1 MeV and 40 keV - 20 MeV bands respectively. We place a 90% upper limit of 2 x 10^{-7} erg cm-2 s-1 in the 1 - 100 GeV band where CAL reaches 15% of the integrated LIGO probability (~1.1 sr). The CGBM 7 sigma upper limits are 1.0 x 10^{-6} erg cm-2 s-1 (7-500 keV) and 1.8 x 10^{-6} erg cm-2 s-1 (50-1000 keV) for one second exposure. Those upper limits correspond to the luminosity of 3-5 x 10^{49} erg s-1 which is significantly lower than typical short GRBs.


Astroparticle Physics | 1997

Azimuthally controlled observation of heavy cosmic-ray primaries by means of the balloon-borne emulsion chamber

Eiji Kamioka; M. Hareyama; M. Ichimura; Y. Ishihara; Tamaki Kobayashi; H. Komatsu; S. Kuramata; K. Maruguchi; H. Matsutani; Atsusi Mihashi; Hiroyuki Mito; Takahiro Nakamura; H. Nanjo; T. Ouchi; Tomohiko Ozawa; T. Shibata; H. Sugimoto; Z. Watanabe

Abstract We have exposed an emulsion chamber with an area of 1.22 m 2 on board of the balloon at an atmospheric depth of 8.9 g/cm 2 for 15.8 h, which has been azimuthally controlled within the accuracy of Δφ = 0.5°. With the use of the east-west asymmetry effect of arriving cosmic-ray primaries, we can obtain the energy spectra for individual elements in the kinetic energy range from a few GeV/nucleon up to ∼ 15 GeV/nucleon. We present also the energy spectra obtained by the opening-angle method for the higher energy region, 5–1000 GeV/nucleon, for the elements not lighter than silicon. We find that the energy spectra obtained by the former method continue smoothly to those obtained by the latter, indicating that the energy determination using the opening-angle method is performed correctly. We compare also the present results with those obtained by the previous work. We find that the iron flux is in nice agreement with that obtained by the previous observation, the differential spectral index being constant, ∼ 2.5, up to a few TeV/nucleon, while in the case of the silicon component, it is ∼ 2.7 for 10–1000 GeV/nucleon in this work, significantly harder than the previous one, ∼ 2.9. We also report the flux of the sub-iron component and its abundance ratio to the iron component. We find the abundance ratio of [Z = 21–25]/iron is slightly less than those obtained previously in the higher energy region, ≳ 100 GeV/n.


Astroparticle Physics | 2017

Energy calibration of CALET onboard the International Space Station

Y. Asaoka; Y. Akaike; Y. Komiya; R. Miyata; S. Torii; O. Adriani; Katsuaki Asano; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; P. Brogi; J. H. Buckley; N. Cannady; G. Castellini; C. Checchia; Michael L. Cherry; G. Collazuol; V. Di Felice; Ken Ebisawa; H. Fuke; T. G. Guzik; T. Hams; M. Hareyama; N. Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; W. Ishizaki

Abstract In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1xa0GeV to 20xa0TeV with a very high resolution of 2% above 100xa0GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.


3rd International Conference on New Frontiers in Physics, ICNFP 2014 | 2015

The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

O. Adriani; Yosui Akaike; Katsuaki Asano; Y. Asaoka; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; J. H. Buckley; G. Castellini; Michael L. Cherry; G. Collazuol; Ken Ebisawa; V. Di Felice; H. Fuke; T. G. Guzik; T. Hams; M. Hareyama; N. Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; M. H. Israel; A. Javaid; Eiji Kamioka; K. Kasahara; J. Kataoka; Ryuho Kataoka; Y. Katayose

The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).


32nd International Cosmic Ray Conference, ICRC 2011 | 2011

Expected CALET telescope performance from monte carlo simulations

Yosui Akaike; K. Kasahara; S. Torii; S. Ozawa; Yuki Shimizu; Mikihiko Karube; Keisuke Yoshida; K. Yoshida; M. Ichimura

The CALorimetric Electron Telescope, CALET, is a versatile detector for exploring the high energy universe, planned to be placed on the Japanese Experiment Module Facility of the International Space Station, ISS. CALET is designed to perform direct measurements of electrons from 1 GeV to 20 TeV, gamma-rays from 10 GeV to 10 TeV, and protons and nuclei from several 10 GeV to 1000 TeV. The main detector consists of a Charge Detector (CHD), an Imaging Calorimeter (IMC), and a Total Absorption Calorimeter (TASC). The total thickness of the calorimeter is 30 X0 for electromagnetic particles or 1.3 λ for protons. We have been carrying out Monte Carlo simulations with EPICS to study the CALET performance. With its imaging and deep calorimeter, CALET provides excellent proton rejection, ∼ 10, and a high energy resolution, ∼2%, over 100 GeV for electromagnetic particles, which make possible the observation of electrons and gamma-rays into the TeV region. In this paper, we will present the expected performance in observing the different particle species, including the geometric factor, the trigger efficiency, the energy resolution and the particle identification power.


Astroparticle Physics | 2018

On-orbit operations and offline data processing of CALET onboard the ISS

Y. Asaoka; S. Ozawa; S. Torii; O. Adriani; Y. Akaike; Katsuaki Asano; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; P. Brogi; J. H. Buckley; N. Cannady; G. Castellini; C. Checchia; Michael L. Cherry; G. Collazuol; V. Di Felice; Ken Ebisawa; H. Fuke; T. G. Guzik; T. Hams; M. Hareyama; N. Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; W. Ishizaki; M. H. Israel

Abstract The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1u202fGeV to 20 TeV with a 2% energy resolution above 30xa0GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda University, respectively. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of u202f∼u202f84%. Nearly 450 million events are collected with a high-energy (Eu202f>u202f10xa0GeV) trigger. In addition, calibration data acquisition and low-energy trigger modes, as well as an ultra-heavy trigger mode, are consistently scheduled around the ISS orbit. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.

Collaboration


Dive into the M. Ichimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Fuke

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

K. Kasahara

Shibaura Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Kamioka

Shibaura Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ken Ebisawa

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Hareyama

St. Marianna University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge