M.J. Ascott
British Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.J. Ascott.
Science of The Total Environment | 2016
Lei Wang; Marianne E. Stuart; Melinda Lewis; Rob Ward; D. Skirvin; Pamela S. Naden; A.L. Collins; M.J. Ascott
Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses.
Science of The Total Environment | 2016
M.J. Ascott; Daren Gooddy; Dan Lapworth; Marianne E. Stuart
Understanding sources of phosphorus (P) to the environment is critical for the management of freshwater and marine ecosystems. Phosphate is added at water treatment works for a variety of reasons: to reduce pipe corrosion, to lower dissolved lead and copper concentrations at customers taps and to reduce the formation of iron and manganese precipitates which can lead to deterioration in the aesthetic quality of water. However, the spatial distribution of leakage into the environment of phosphate added to mains water for plumbosolvency control has not been quantified to date. Using water company leakage rates, leak susceptibility and road network mapping, we quantify the total flux of P from leaking water mains in England and Wales at a 1km grid scale. This is validated against reported leaks for the UKs largest water utility. For 2014, we estimate the total flux of P from leaking mains to the environment to be c. 1.2ktP/year. Spatially, P flux is concentrated in urban areas where pipe density is highest, with major cities acting as a significant source of P (e.g. London into the Thames, with potentially 30% of total flux). The model suggests the majority (69%) of the P flux is likely to be to surface water. This is due to leakage susceptibility being a function of soil corrosivity and shrink-swell behaviour which are both controlled by presence of low-permeability clays. The location of major cities such as London close to the coast results in a potentially significant flux of P from mains leakage to estuarine environments. The contribution of leakage of phosphate dosed mains water should be considered in future source apportionment and ecosystem management. The methodology presented is generic and can be applied in other countries where phosphate dosing is undertaken or used prior to dosing during investment planning.
Nature Communications | 2017
M.J. Ascott; Daren Gooddy; Lei Wang; Marianne E. Stuart; Melinda Lewis; Rob Ward; Andrew Binley
Global-scale nitrogen budgets developed to quantify anthropogenic impacts on the nitrogen cycle do not explicitly consider nitrate stored in the vadose zone. Here we show that the vadose zone is an important store of nitrate that should be considered in future budgets for effective policymaking. Using estimates of groundwater depth and nitrate leaching for 1900–2000, we quantify the peak global storage of nitrate in the vadose zone as 605–1814 Teragrams (Tg). Estimates of nitrate storage are validated using basin-scale and national-scale estimates and observed groundwater nitrate data. Nitrate storage per unit area is greatest in North America, China and Europe where there are thick vadose zones and extensive historical agriculture. In these areas, long travel times in the vadose zone may delay the impact of changes in agricultural practices on groundwater quality. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate.Current global-scale nitrogen (N) budgets quantifying anthropogenic impacts on the N cycle do not explicitly consider nitrate storage in the vadose zone. Here, using estimates of depth to groundwater and nitrate leaching between 1900–2000, the authors show that the vadose zone is an important store of nitrate.
Science of The Total Environment | 2016
M.J. Ascott; Dan Lapworth; Daren Gooddy; R.C. Sage; I. Karapanos
Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration site.
Environmental Science & Technology | 2015
Daren Gooddy; Dan Lapworth; M.J. Ascott; Sarah A. Bennett; T.H.E. Heaton; Ben Surridge
Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.
Science of The Total Environment | 2017
Daren Gooddy; M.J. Ascott; Dan Lapworth; Rob Ward; Helen P. Jarvie; Michael J. Bowes; Edward Tipping; Rachael M. Dils; Benjamin William James Surridge
Effective strategies to reduce phosphorus (P)-enrichment of aquatic ecosystems require accurate quantification of the absolute and relative importance of individual sources of P. In this paper, we quantify the potential significance of a source of P that has been neglected to date. Phosphate dosing of raw water supplies to reduce lead and copper concentrations in drinking water is a common practice globally. However, mains water leakage (MWL) potentially leads to a direct input of P into the environment, bypassing wastewater treatment. We develop a new approach to estimate the spatial distribution and time-variant flux of MWL-P, demonstrating this approach for a 30-year period within the exemplar of the River Thames catchment in the UK. Our analyses suggest that MWL-P could be equivalent to up to c.24% of the P load entering the River Thames from sewage treatment works and up to c.16% of the riverine P load derived from agricultural non-point sources. We consider a range of policy responses that could reduce MWL-P loads to the environment, including incorporating the environmental damage costs associated with P in setting targets for MWL reduction, alongside inclusion of MWL-P within catchment-wide P permits.
Hydrological Processes | 2017
M.J. Ascott; B.P. Marchant; D.M.J. Macdonald; Andrew McKenzie; John P. Bloomfield
Controls on the spatiotemporal extent of groundwater flooding are poorly understood, despite the long duration of groundwater flood events and distinct social and economic impacts. We developed a novel approach using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) and applied it to the 2013/14 Chalk groundwater flooding in the English Lowlands. We proposed a standardised index of groundwater flooding which we calculated for monthly groundwater levels for 26 boreholes in the Chalk. We grouped these standardised series using k-means cluster analysis and cross-correlated the cluster centroids with the Standardised Precipitation Index (SPI) accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which responded to precipitation over different timescales. We estimated IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models corroborate the SPI analysis showing different response functions between the groups. We applied identical effective precipitation inputs to each of the IRF models and observed differences between the hydrographs from each group. It is suggested this is due to the hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits (recent unconsolidated sediments overlying the bedrock, such as clays and tills), which are extensive over one of the groups. The overarching controls on groundwater flood response are concluded to be a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events. The approach presented is generic and parsimonious and can be easily applied where sufficient groundwater level and rainfall data are available.
Science of The Total Environment | 2018
M.J. Ascott; Daren Gooddy; Dan Lapworth; P. Davidson; Michael J. Bowes; Helen P. Jarvie; Ben Surridge
Accurate quantification of sources of phosphorus (P) entering the environment is essential for the management of aquatic ecosystems. P fluxes from mains water leakage (MWL-P) have recently been identified as a potentially significant source of P in urbanised catchments. However, both the temporal dynamics of this flux and the potential future significance relative to P fluxes from wastewater treatment works (WWT-P) remain poorly constrained. Using the River Thames catchment in England as an exemplar, we present the first quantification of both the seasonal dynamics of current MWL-P fluxes and future flux scenarios to 2040, relative to WWT-P loads and to P loads exported from the catchment. The magnitude of the MWL-P flux shows a strong seasonal signal, with pipe burst and leakage events resulting in peak P fluxes in winter (December, January, February) that are >150% of fluxes in either spring (March, April, May) or autumn (September, October, November). We estimate that MWL-P is equivalent to up to 20% of WWT-P during peak leakage events. Winter rainfall events control temporal variation in both WWT-P and riverine P fluxes which consequently masks any signal in riverine P fluxes associated with MWL-P. The annual average ratio of MWL-P flux to WWT-P flux is predicted to increase from 15 to 38% between 2015 and 2040, associated with large increases in P removal at wastewater treatment works by 2040 relative to modest reductions in mains water leakage. However, further research is required to understand the fate of MWL-P in the environment. Future P research and management programmes should more fully consider MWL-P and its seasonal dynamics, alongside the likely impacts of this source of P on water quality.
Environmental Science & Technology | 2018
M.J. Ascott; Daren Gooddy; Benjamin William James Surridge
Understanding anthropogenic disturbance of macronutrient cycles is essential for assessing the risks facing ecosystems. For the first time, we quantified inorganic nitrogen (N) fluxes associated with abstraction, mains water leakage, and transfers of treated water related to public water supply. In England, the mass of nitrate-N removed from aquatic environments by abstraction (ABS-NO3-N) was estimated to be 24.2 kt N/year. This is equal to six times the estimates of organic N removal by abstraction, 15 times in-channel storage of organic N, and 30 times floodplain storage of organic N. ABS-NO3-N is also between 3 and 39% of N removal by denitrification in the hydrosphere. Mains water leakage of nitrate-N (MWL-NO3-N) returns 3.62 kt N/year to the environment, equating to approximately 15% of ABS-NO3-N. In urban areas, MWL-NO3-N can represent up to 20% of the total N inputs. MWL-NO3-N is predicted to increase by up to 66% by 2020 following implementation of treated water transfers. ABS-NO3-N and MWL-NO3-N should be considered in future assessments of N fluxes, in order to accurately quantify anthropogenic disturbances to N cycles. The methodology we developed is transferable, uses widely available datasets, and could be used to quantify N fluxes associated with public water supply across the world.
Hydrological Processes | 2016
M.J. Ascott; Lei Wang; Marianne E. Stuart; Rob Ward; Alwyn Hart