Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Bowes is active.

Publication


Featured researches published by Michael J. Bowes.


Science of The Total Environment | 2003

Phosphorus dynamics along a river continuum

Michael J. Bowes; William A. House; R.A. Hodgkinson

Changes in phosphorus concentration and form along 110 km of the River Swale in Northern England were examined over a 2-year period during 1998-2000. This study aimed to use these data to identify the importance of within-channel storage on phosphorus dynamics and to determine the changes in longitudinal transport of phosphorus along a river continuum. The catchment was divided into three contrasting zones: the upland, dominated by sheep farming; a transitional zone, and an intensively-farmed lowland, impacted by sewage inputs. Samples, taken at the downstream extent of each zone at approximately 2-day intervals, were analysed for total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP), all of which increased in concentration downstream. SRP concentrations were highest in summer and during low flows, although 92% of phosphorus was exported between autumn and spring. The TDP in the upper and transitional zones consisted of both soluble reactive and un-reactive phosphorus, but in marked contrast was almost entirely in soluble reactive form in the lowland. The majority (85%) of phosphorus exported from the catchment was generated within the lowland, due to sewage inputs and losses from intensive agricultural land. It was predominantly particulate-bound, due to interactions of dissolved phosphorus with suspended sediment. The upland contributed less than 5% to the TP annual budget. Intensive river water monitoring highlighted that the lowland dominated phosphorus export during the rising stage of storms (indicating a rapid mobilisation of fine phosphorus-rich sediment), whereas the transitional zone became dominant on the falling stage (due to greater diffuse phosphorus input).


Science of The Total Environment | 2008

Modelling of phosphorus inputs to rivers from diffuse and point sources.

Michael J. Bowes; Jim T. Smith; Helen P. Jarvie; Colin Neal

The difference in timing of point and diffuse phosphorus (P) delivery to a river produces clear differences in the P concentration-flow relationship. Point inputs decrease in concentration with increasing river flow, due to dilution of a relatively constant input, whereas diffuse (non-point) load usually increases with river flow. This study developed a simple model, based on this fundamental difference, which allowed point and diffuse inputs to be quantified by modelling their contribution to river P concentration as a power-law function of flow. The relationships between total phosphorus (TP) concentration and river flow were investigated for three contrasting UK river catchments; the Swale (Yorkshire), the Frome (Dorset) and the Avon (Warwickshire). A load apportionment model was fitted to this empirical data to give estimates of point and diffuse load inputs at each monitoring site, at high temporal resolution. The model produced TP source apportionments that were similar to those derived from an export coefficient approach. For many diffuse-dominated sites within this study (with up to 75% of the annual TP load derived from diffuse sources), the model showed that reductions of point inputs would be most effective in order to reduce eutrophication risk, due to point source dominance during the plant and algae growing period. This modelling approach should provide simple, robust and rapid TP source apportionment from most concentration-flow datasets. It does not require GIS, information on land use, catchment size, population or livestock density, and could provide a valuable and versatile tool to catchment managers for determining suitable river mitigation options.


Science of The Total Environment | 2011

An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios

Andrew C. Johnson; Michael J. Bowes; Alison Crossley; Helen P. Jarvie; Kerstin Jurkschat; Monika D. Jürgens; Alan J. Lawlor; Barry Park; Phillip Rowland; David J. Spurgeon; Claus Svendsen; Ian P. Thompson; Robert J. Barnes; Richard J. Williams; Nan Xu

The fate of Ti was examined in an activated sludge plant serving over 200,000 people. These studies revealed a decrease of 30 to 3.2 μg/L of Ti < 0.45 μm from influent to effluent and a calculated Ti presence of 305 mg/kg DW in wasted sludge. Thus, using sludge as a fertiliser would result in a predicted deposition of up to 250 mg/m² of Ti to soil surfaces using a recommended maximal agricultural application rate. Given the major use of TiO₂ in many industrial and domestic applications where loss to the sewer is possible, this measured Ti was presumed to have been largely TiO₂, a proportion of which will be nanoparticle sized. To assess the behaviour of engineered nanoparticle (ENP) TiO₂ in sewage and toxicology studies, Optisol (Oxonica Materials Ltd) and P25 (Evonik Industries AG), which are representative of forms used in sunscreen and cosmetic products, were used. These revealed a close association of TiO₂ ENPs with activated sludge. Using commercial information on consumption, and removal rates for sewage treatment, predictions were made for river water concentrations for sunscreen TiO₂ ENPs for the Anglian and Thames regions in Southern England. The highest predicted value from these exercises was 8.8 μg/L for the Thames region in which it was assumed that one in four people used the recommended application of sunscreen during a low flow (Q95) period. Ecotoxicological studies using potentially vulnerable species indicated that 1000 μg/L TiO₂ ENP did not affect the viability of a mixed community of river bacteria in the presence of UV light. Direct exposure to TiO₂ ENPs did not impair the immuno-effectiveness of earthworm coelomocyte cells at concentrations greatly above those predicted for sewage sludge.


Science of The Total Environment | 2015

Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships

Michael J. Bowes; Helen P. Jarvie; Sarah J. Halliday; Richard A. Skeffington; Andrew J. Wade; M. Loewenthal; Emma Gozzard; Jonathan Newman; Elizabeth J. Palmer-Felgate

The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring-summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration-flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration-flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.


Science of The Total Environment | 2001

Seasonal export of phosphorus from a lowland catchment: upper River Cherwell in Oxfordshire, England

Linda May; W.Alan House; Michael J. Bowes; Jim McEvoy

The export of phosphorus from a lowland catchment, the River Cherwell in southern England, was measured over a period of 1 year. The results describe total phosphorus concentrations in the water and river discharge at 4-day intervals. These were used to estimate the load of total phosphorus exported from the catchment. These annual loads were compared with exports estimated from sewage inputs and diffuse inputs calculated from land-coverage data, with assigned phosphorus export coefficients for particular land uses. The method was further developed to examine seasonal changes in phosphorus exports by predicting monthly losses using annual export coefficients normalised with respect to the relative hydraulic runoff for a particular month. The results show a strong seasonal dependence of total exports, with retention of phosphorus in the river system in the spring to early autumn and release of stored material during the winter. This pattern remained true, even with 50% increase in the main land-cover export and a similar increase in treated sewage exports.


The ISME Journal | 2015

Catchment-scale biogeography of riverine bacterioplankton

Daniel S. Read; Hyun S. Gweon; Michael J. Bowes; Lindsay K. Newbold; Dawn Field; Mark J. Bailey; Robert I. Griffiths

Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river.


Science of The Total Environment | 2010

Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent

Michael J. Bowes; Colin Neal; Helen P. Jarvie; Jim T. Smith; Helen N. Davies

Phosphorus (P) concentration and flow data gathered during the 1990s for a range of British rivers were used to determine the relative contributions of point and diffuse inputs to the total P load, using the Load Apportionment Model (LAM). Heavily urbanised catchments were dominated by sewage inputs, but the majority of the study catchments received most of their annual phosphorus load from diffuse sources. Despite this, almost 80% of the study sites were dominated by point source inputs for the majority of the year, particularly during summer periods when eutrophication risk is greatest. This highlights the need to reduce sewage P inputs to improve the ecological status of British rivers. These modelled source apportionment estimates were validated against land-use data and boron load (a chemical marker for sewage). The LAM was applied to river flow data in subsequent years, to give predicted P concentrations (assuming no change in P source inputs), and these estimates were compared with observed concentration data. This showed that there had been significant reductions in P concentration in the River Thames, Aire and Ouse in the period 1999 to 2002, which were attributable to the introduction of P stripping at sewage treatment works (STW). The model was then used to forecast P concentrations resulting from the introduction of P removal at STW to a 2 or 1mgl(-1) consent limit. For the urbanised rivers in this study, the introduction of phosphorus stripping to a 1mgl(-1) consent level at all STW in the catchment would not reduce P concentrations in the rivers to potentially limiting concentrations. Therefore, further sewage P stripping will be required to comply with the Water Framework Directive. Diffuse P inputs may also need to be reduced before some of the highly nutrient-enriched rivers achieve good ecological status.


The ISME Journal | 2015

Validated predictive modelling of the environmental resistome

Gregory C. A. Amos; Emma Gozzard; Charlotte E. Carter; A. Mead; Michael J. Bowes; Peter M. Hawkey; Lihong Zhang; Andrew C. Singer; William H. Gaze; Elizabeth M. H. Wellington

Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.


Science of The Total Environment | 2011

Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working?

Michael J. Bowes; Jim T. Smith; Colin Neal; D.V. Leach; Peter Scarlett; Heather Wickham; Sarah Harman; Linda K. Armstrong; J. Davy-Bowker; M. Haft; Cynthia Davies

The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l⁻¹ in the mid to late 1960s to 6.0 mg l⁻¹ in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l⁻¹ in the mid 1960s to a maximum of 190 μg l⁻¹ in 1989. In 2002, there was a step reduction in SRP concentration (average=88 μg l⁻¹ in 2002-2005), with further improvement in 2007-2009 (average=49 μg l⁻¹), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO₂) of 60 times atmospheric CO₂ were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO₂ through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community through the CEH data portal (http://gateway.ceh.ac.uk/).


Philosophical Transactions of the Royal Society A | 2013

A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system

Paul Whitehead; J. Crossman; B. B. Balana; Martyn N. Futter; Sean Comber; Li Jin; Dimitris Skuras; Andrew J. Wade; Michael J. Bowes; Daniel S. Read

The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

Collaboration


Dive into the Michael J. Bowes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim T. Smith

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Singer

Mansfield University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge