Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. Dilworth is active.

Publication


Featured researches published by M. J. Dilworth.


Plant and Soil | 1988

Mineral constraints to nitrogen fixation

G.W. O'Hara; Nantakorn Boonkerd; M. J. Dilworth

Mineral nturient defiencies are a major constraint limiting legume nitrogen fixation and yield. In this review general techniques for assessing nutrient involvement in symbiotic nitrogen fixation are described and specific methods are outlined for determining which developmental phase of the symbiosis is most sensitive to nutrient deficiency.The mineral nutrition of the Rhizobium component of the symbiosis is considered both as the free living organism in the soil and as bacteroids in root nodules. Rhizobial growth and survival in soils is not usually limited by nutrient availability. Multiplication of rhizobia in the legume rhizosphere is limited by low Ca availability. Nodule initiation is affected by severe Co deficiency through effects on rhizobia. Nodule development is limited by severe B deficiency via an effect on plant cell growth. Fe deficiency limits nodule development by affecting rhizobia and strains of rhizobia differ widely in their ability to acquire sufficient Fe for their symbiotic development. Nodule function requires more Mo than does the host plant, and in some symbioses nitrogen fixation may be specifically limited by low availability of Ca, Co, Cu and Fe. The importance of the peribacteriod membrane in determining nutrient availability to bacteroids is considered.It is concluded that the whole legume-Rhizobium symbiosis should be considered when improving legume growth and yield under nutrient stress conditions. Differences among rhizobial strains in their ability to obtain mineral nutrients from their environment may be agronomically important.


Microbiology | 1999

Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria

Wayne Reeve; Ravi Tiwari; Penelope S. Worsley; M. J. Dilworth; A. R. Glenn; John Howieson

Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria.


International Journal of Systematic and Evolutionary Microbiology | 2012

Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts.

Julie Ardley; Parker; S. De Meyer; Robert D. Trengove; G.W. O'Hara; Wayne Reeve; R.J. Yates; M. J. Dilworth; Anne Willems; John Howieson

Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)).


Microbiology | 1996

Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system

Ravi Tiwari; Wayne Reeve; M. J. Dilworth; A. R. Glenn

An acid-sensitive mutant, TG5-46, derived from Rhizobium meliloti WSM419 by Tn5 mutagenesis, fails to grow below pH 6.0 whereas the parent strain grows at pH 5.7. The DNA sequence of a 2.2 kb rhizobial DNA region flanking Tn5 in TG5-46 contains two open reading frames, ORF1 (designated actS) and ORF2 (designated actR), having high similarity to the sensor-regulator pairs of the two-component systems involved in signal transduction in prokaryotes. Insertion of an omega interposon into actS in R. meliloti WSM419 resulted in an acid-sensitive phenotype. A DNA fragment from the wild-type complemented the acid-sensitive phenotype of RT295 (ActS-) and TG5-46 (ActR-), while fragments containing only actR or actS complemented TG5-46 and RT295, respectively. The presence of multiple copies of actR complemented not only TG5-46 but also RT295. Cloning DNA upstream from actR and actS into a broad-host-range lacZ expression vector and measuring beta-galactosidase activities showed that both genes are constitutively expressed regardless of the external pH. Genomic DNA from all strains of R. meliloti, but no other bacteria tested, hybridized with an actRS probe at high stringency. These data implicate a two-component sensor-regulator protein pair in acid tolerance in R. meliloti and suggest their involvement in pH sensing and/or response by these bacteria.


Soil Biology & Biochemistry | 2000

Hydroxamate siderophores of root nodule bacteria

Kerry C. Carson; Jean-Marie Meyer; M. J. Dilworth

Abstract Sixty strains of root nodule bacteria were screened for siderophore production in low-iron broth, among them 40 strains from the Australian Inoculants Research and Control Service (AIRCS) which are the current commercial inoculants used in the pulse and legume pasture industries in Australia. Eleven new siderophore-producing strains were recognised including Sinorhizobium meliloti (WSM826, WSM352, SU47), Rhizobium leguminosarum biovar viciae (WU163, MNF3841, SU391), Rhizobium leguminosarum biovar trifolii (CB782, CC2483g, CC283b) and Rhizobium tropici (WSM1385, CB3060). Siderophores were identified by chemical characterisation for catecholate or hydroxamate, spectral studies, isoelectrofocusing and siderophore-mediated iron-uptake studies. The S. meliloti strains all produced dihydroxamate siderophores. Other siderophore-producing rhizobia, with the exception of R. tropici CB306c, excreted trihydroxamate-type siderophores. No bradyrhizobia were Chromazurol S-positive. 59 Fe uptake studies revealed that all strains transported iron complexed to citrate. The sinorhizobia took up 5–10-fold more iron from dihydroxamate than trihydroxamate siderophores. Conversely, other rhizobia and the slow-growing bradyrhizobia transported iron complexed to trihydroxamates at rates 2–5 fold those of dihydroxamate siderophores. Rhizobactin 1021 was excreted by S. meliloti strains 1021, Rm2011 and SU47 and vicibactin by seven strains of R. leguminosarum (bv. viciae and bv. trifolii ).


New Phytologist | 2008

The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021

Jason Terpolilli; Graham O’Hara; Ravi Tiwari; M. J. Dilworth; John Howieson

Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm1021 and two other Sinorhizobium strains. Plant shoot dry weights, plant nitrogen content and nodule distribution, morphology and number were analysed. Compared with nitrogen-fed controls, Sm1021 was ineffective or partially effective on all hosts tested (excluding M. sativa), as measured by reduced dry weights and shoot N content. Against an effective strain, Sm1021 on M. truncatula accessions produced more nodules, which were small, pale, more widely distributed on the root system and with fewer infected cells. The Sm1021-M. truncatula symbiosis is poorly matched for N(2) fixation and the strain could possess broader N(2) fixation deficiencies. A possible origin for this reduction in effectiveness is discussed. An alternative sequenced strain, effective at N(2) fixation on M. truncatula A17, is Sinorhizobium medicae WSM419.


Archives of Microbiology | 1992

Siderophore and organic acid production in root nodule bacteria

Kerry C. Carson; S. Holliday; A. R. Glenn; M. J. Dilworth

Nineteen strains of root nodule bacteria were grown under various iron regimes (0.1, 1.0 and 20 μM added iron) and tested for catechol and hydroxamate siderophore production and the excretion of malate and citrate. The growth response of the strains to iron differed markedly. For 12 strains (Bradyrhizobium strains NC92B and 32H1, B. japonicum USDA110 and CB1809, B. lupini WU8, cowpea Rhizobium NGR234, Rhizobium meliloti strains U45 and CC169, Rhizobium leguminosarum bv viciae WU235 and Rhizobium leguminosarum bv trifolii strains TA1, T1 and WU95) the mean generation time showed no variation with the 200-fold increase in iron concentration. In contrast, in Bradyrhizobium strains NC921, CB756 and TAL1000, B. japonicum strain 61A76 and R. leguminosarum bv viciae MNF300 there was a 2–5 fold decrease in growth rate at low iron. R. meliloti strains WSM419 and WSM540 showed decreased growth at high iron.All strains of root nodule bacteria tested gave a positive CAS (chrome azurol S) assay for siderophore production. No catechol-type siderophores were found in any strain, and only R. leguminosarum bv trifolii T1 and bv viciae WU235 produced hydroxamate under low iron (0.1 and 1.0 μM added iron).Malate was excreted by all strains grown under all iron regimes. Citrate was excreted by B. japonicum USDA110 and B. lupini WU8 in all iron concentrations, while Bradyrhizobium TAL1000, R. leguminosarum bv viciae MNF300 and B. japonicum 61A76 only produced citrate under low iron (0.1 and/or 1.0 μM added iron) during the stationary phase of growth.


Microbiology | 1985

Properties of organic acid utilization mutants of Rhizobium leguminosarum strain 300

R. Arwas; I. A. McKAY; F. R. P. Rowney; M. J. Dilworth; A. R. Glenn

Summary: Mutants of Rhizobium leguminosarum 300 which were unable to utilize one or more organic acids as growth substrates were obtained by Tn5 mutagenesis. Mutant strain MNF3080 was defective in dicarboxylate transport and was unable to grow on succinate. Strain MNF3085 was defective in phosphoenolpyruvate carboxykinase and hence could not carry out gluconeogenesis. This strain did not grow on pyruvate, succinate, glutamate or arabinose but grew on glucose and on glycerol. Strain MNF3075 was unable to utilize pyruvate; the biochemical lesion in this mutant was not identified. MNF3085 and MNF3075 were symbiotically effective. MNF3080 nodulated peas, but the nodules were ineffective in N2 fixation and displayed morphological abnormalities. These data support previous findings which suggest that utilization of exogenous dicarboxylates is essential for effective nodule development by R. leguminosarum.


Archives of Microbiology | 1981

The uptake and hydrolysis of disaccharides by fast-and slow-growing species of Rhizobium

A. R. Glenn; M. J. Dilworth

Slow growing strains of rhizobia appear to lack both uptake systems and catabolic enzymes for disaccharides. In the fast-growing strains of rhizobia there are uptake mechanisms and catabolic enzymes for disaccharide metabolism. In Rhizobium leguminosarum WU 163 and WU235 and R. trifolii WU290, sucrose and maltose uptake appears to be constitutive whereas in R. meliloti WU60 and in cowpea Rhizobium NGR234 uptake of these disaccharides is inducible. There is evidence that there are at least two distinct disaccharide uptake systems in fast-growing rhizobia, one transporting sucrose, maltose and trehalose and the other, lactose. Disaccharide uptake is via an active process since uptake is inhibited by azide, dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone but not by arsenate. Bacteroids of R. leguminosarum WU235 and R. lupini WU8 are unable to accumulate disaccharides.


Standards in Genomic Sciences | 2010

Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

Wayne Reeve; Patrick Chain; Graham O’Hara; Julie Ardley; Kemanthi Nandesena; Lambert Bräu; Ravi Tiwari; Stephanie Malfatti; Hajnalka Kiss; Alla Lapidus; Alex Copeland; Matt Nolan; Miriam Land; Loren Hauser; Yun-Juan Chang; Natalia Ivanova; Konstantinos Mavromatis; Victor Markowitz; Nikos C. Kyrpides; Margaret Gollagher; R.J. Yates; M. J. Dilworth; John Howieson

Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

Collaboration


Dive into the M. J. Dilworth's collaboration.

Top Co-Authors

Avatar

A. R. Glenn

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. D. Robson

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge