M. J. Fernandes
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. J. Fernandes.
Archive | 2008
Susana M. Barbosa; Maria Eduarda Silva; M. J. Fernandes
The characterisation and quantification of long-term sea-level variability is of considerable interest in a climate change context. Long time series from coastal tide gauges are particularly appropriate for this purpose. Long-term variability in tide gauge records is usually expressed through the linear slope resulting from the fit of a linear model to the time series, thus assuming that the generating process is deterministic with a short memory component. However, this assumption needs to be tested, since trend features can also be due to non-deterministic processes such as random walk or long range dependent processes, or even be driven by a combination of deterministic and stochastic processes. Specific methodology is therefore required to distinguish between a deterministic trend and stochastically-driven trend-like features in a time series. In this chapter, long-term sea-level variability is characterised through the application of (i) parametric statistical tests for stationarity, (ii) wavelet analysis for assessing scaling features, and (iii) generalised least squares for estimating deterministic trends. The results presented here for long tide gauge records in the North Atlantic show, despite some local coherency, profound differences in terms of the low frequency structure of these sea-level time series. These differences suggest that the long-term variations are reflecting mainly local/regional phenomena.
Archive | 2011
E. Obligis; C. Desportes; L. Eymard; M. J. Fernandes; Clara Lázaro; A. L. Nunes
The altimeter range should be corrected for tropospheric path delays due to atmospheric pressure at sea level and atmospheric humidity. Over open ocean, these corrections are performed with enough accuracy using the microwave radiometer for the wet path delay and meteorological model analyses for the dry path delay. In coastal areas, specific studies are needed to assess the quality of the standard products and to propose specific processing if necessary. For the wet tropospheric correction, new promising approaches are presented based on optimal combination of radiometer, meteorological model, GNSS and land information. For the dry tropospheric correction, an assessment of the accuracy of the model-based estimation is provided.
Tellus A | 2008
Susana M. Barbosa; Maria Eduarda Silva; M. J. Fernandes
Sea level is a key variable in the context of global climate change. Climate-induced variability is expected to affect not only the mean sea level but also the amplitude and phase of its seasonal cycle. This study addresses the changes in the amplitude and phase of the annual cycle of coastal sea level in the extra-tropical North Atlantic. The physical causes of these variations are explored by analysing the association between fluctuations in the annual amplitude of sea level and in ancillary parameters [atmospheric pressure, sea-surface temperature and North Atlantic Oscillation (NAO) winter index]. The annual cycle is extracted through autoregressive decomposition, in order to be able to separate variations in seasonality from long-term interannual variations in the mean. The changes detected in the annual sea level cycle are regionally coherent, and related to changes in the analysed forcing parameters. At the northern sites, fluctuations in the annual amplitude of sea level are associated with concurrent changes in temperature, while atmospheric pressure is the dominant influence for most of the sites on the western boundary. The state of the NAO influences the annual variability in the Southern Bight, possibly through NAO-related changes in wind stress and ocean circulation.
Marine Geodesy | 2000
M. J. Fernandes; L. Bastos; J. Catalão
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were compu...This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.
Remote Sensing | 2016
M. J. Fernandes; Clara Lázaro
Due to its large space-time variability, the wet tropospheric correction (WTC) is still considered a significant error source in satellite altimetry. This paper presents the GNSS (Global Navigation Satellite Systems) derived Path Delay Plus (GPD+), the most recent algorithm developed at the University of Porto to retrieve improved WTC for radar altimeter missions. The GPD+ are WTC estimated by space-time objective analysis, by combining all available observations in the vicinity of the point: valid measurements from the on-board microwave radiometer (MWR), from GNSS coastal and island stations and from scanning imaging MWR on board various remote sensing missions. The GPD+ corrections are available both for missions which do not possess an on-board microwave radiometer such as CryoSat-2 (CS-2) and for all missions which carry this sensor, by addressing the various error sources inherent to the MWR-derived WTC. To ensure long-term stability of the corrections, the large set of radiometers used in this study have been calibrated with respect to the Special Sensor Microwave Imager (SSM/I) and the SSM/I Sounder (SSM/IS). The application of the algorithm to CS-2 and Geosat Follow-on (GFO), as representative altimetric missions without and with a MWR aboard the respective spacecraft, is described. Results show that, for both missions, the new WTC significantly reduces the sea level anomaly (SLA) variance with respect to the model-based corrections. For GFO, the new WTC also leads to a large reduction in SLA variance with respect to the MWR-derived WTC, recovering a large number of observations in the coastal and polar regions and full sets of tracks and several cycles when MWR measurements are missing or invalid. Overall, the algorithm allows the recovery of a significant number of measurements, ensuring the continuity and consistency of the correction in the open-ocean/coastal transition zone and at high latitudes.
Remote Sensing | 2014
Belinda Lipa; Donald E. Barrick; Andrés Alonso-Martirena; M. J. Fernandes; María I. Ferrer; Bruce Nyden
We describe radar measurements of waves, currents and winds made on the coast of northern Scotland during two 2013/14 winter storms, giving methods, results and interpretation. Wave parameters (height, period, direction and short-wave/wind direction) were derived and compared with measurements made by a neighboring buoy and local weather stations. Wind direction and current velocity maps were produced and the interactions of winds and currents discussed. Significant oscillations in wave parameters were observed, which appear to be due to forcing by tidal current velocity variations. The oscillations in waveheight are explained using hydrodynamic analysis and derived amplitudes are compared with radar measurements.
Journal of Sport and Health Science | 2016
Mónica Mendes Sousa; M. J. Fernandes; Pedro N. Carvalho; José Soares; Pedro Moreira; Vitor Hugo Teixeira
Background The use of nutritional supplements (NS) among athletes is widespread. However, little is known about the relationship between nutritional adequacy and NS usage. The aims of this study were to evaluate the NS usage and to compare the nutritional intake from food and prevalence of micronutrient inadequacy (PMI) between NS users and non-users. Methods Portuguese athletes from 13 sports completed an NS usage questionnaire and a semi-quantitative food-frequency questionnaire assessing information over the previous 12 months. The estimated average requirement cut-point method was used to calculate PMI. General linear models were used to compare nutritional intake and NS usage. Chi-squared tests and logistic regression were performed to study, respectively, relationships and associations between PMI and NS usage. Results From the 244 athletes (66% males, 13–37 years), 64% reported NS usage. After adjustment, NS users showed a higher intake from food (p < 0.05), for at least 1 gender, for energy, and for 7 of the 17 studied nutrients. The highest PMI were seen for vitamins D and E, calcium, folate, and magnesium. After adjustment, NS users, irrespective of gender, reported lower PMI for calcium (OR = 0.28, 95%CI: 0.12–0.65), and female users for magnesium (OR = 0.06, 95%CI: 0.00–0.98). Conclusion Athletes using NS reported a higher nutritional intake from food, and a lower PMI for several nutrients. Perhaps, those who were taking NS were probably the ones who would least benefit from it.
Remote Sensing | 2017
Eko Yuli Handoko; M. J. Fernandes; Clara Lázaro
The focus of this study is the assessment of the main range and geophysical corrections needed to derive accurate sea level time series from satellite altimetry in the Indonesia seas, the ultimate aim being the determination of sea level trend for this region. Due to its island nature, this is an area of large complexity for altimetric studies, a true laboratory for coastal altimetry. For this reason, the selection of the best corrections for sea level anomaly estimation from satellite altimetry is of particular relevance in the Indonesian seas. The same happens with the mean sea surface adopted in the sea level anomaly computation due to the large gradients of the mean sea surface in this part of the ocean. This study has been performed using altimetric data from the three reference missions, TOPEX/Poseidon, Jason-1 and Jason-2, extracted from the Radar Altimeter Database System. Analyses of sea level anomaly variance differences, function of distance from the coast and at altimeter crossovers were used to assess the quality of the various corrections and mean sea surface models. The selected set of corrections and mean sea surface have been used to estimate the sea level anomaly time series. The rate of sea level rise for the Indonesian seas was found to be 4.2 ± 0.2 mm/year over the 23-year period (1993–2015).
GGG2000 Meeting | 2001
L. Bastos; P. Tomé; Telmo R. Cunha; M. J. Fernandes; S. Cunha
The gravity field may be determined using different techniques, but airborne gravity surveying is becoming a powerful tool mainly due to its potential in remote areas.
Remote Sensing | 2016
Nelson Pires; M. J. Fernandes; Christine Gommenginger; Remko Scharroo
A conceptually simple formulation is proposed for a new empirical sea state bias (SSB) model using information retrieved entirely from altimetric data. Nonparametric regression techniques are used, based on penalized smoothing splines adjusted to each predictor and then combined by a Generalized Additive Model. In addition to the significant wave height (SWH) and wind speed (U10), a mediator parameter designed by the mean wave period derived from radar altimetry, has proven to improve the model performance in explaining some of the SSB variability, especially in swell ocean regions with medium-high SWH and low U10. A collinear analysis of scaled sea level anomalies (SLA) variance differences shows conformity between the proposed model and the established SSB models. The new formulation aims to be a fast, reliable and flexible SSB model, in line with the well-settled SSB corrections, depending exclusively on altimetric information. The suggested method is computationally efficient and capable of generating a stable model with a small training dataset, a useful feature for forthcoming missions.