Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. Rymer is active.

Publication


Featured researches published by M. J. Rymer.


Nature | 2007

Talc-bearing serpentinite and the creeping section of the San Andreas fault.

Diane E. Moore; M. J. Rymer

The section of the San Andreas fault located between Cholame Valley and San Juan Bautista in central California creeps at a rate as high as 28 mm yr-1 (ref. 1), and it is also the segment that yields the best evidence for being a weak fault embedded in a strong crust. Serpentinized ultramafic rocks have been associated with creeping faults in central and northern California, and serpentinite is commonly invoked as the cause of the creep and the low strength of this section of the San Andreas fault. However, the frictional strengths of serpentine minerals are too high to satisfy the limitations on fault strength, and these minerals also have the potential for unstable slip under some conditions. Here we report the discovery of talc in cuttings of serpentinite collected from the probable active trace of the San Andreas fault that was intersected during drilling of the San Andreas Fault Observatory at Depth (SAFOD) main hole in 2005. We infer that the talc is forming as a result of the reaction of serpentine minerals with silica-saturated hydrothermal fluids that migrate up the fault zone, and the talc commonly occurs in sheared serpentinite. This discovery is significant, as the frictional strength of talc at elevated temperatures is sufficiently low to meet the constraints on the shear strength of the fault, and its inherently stable sliding behaviour is consistent with fault creep. Talc may therefore provide the connection between serpentinite and creep in the San Andreas fault, if shear at depth can become localized along a talc-rich principal-slip surface within serpentinite entrained in the fault zone.


Bulletin of the Seismological Society of America | 2006

Surface Fault Slip Associated with the 2004 Parkfield, California, Earthquake

M. J. Rymer; John C. Tinsley; Jerome A. Treiman; J. Ramon Arrowsmith; Kevin B. Clahan; Anne Rosinski; William A. Bryant; H. Andrew Snyder; Gary S. Fuis; Nathan A. Toké; Gerald W. Bawden

Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 ( M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1–11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1–29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.


Bulletin of the Seismological Society of America | 2002

Timing of Large Earthquakes since A.D. 800 on the Mission Creek Strand of the San Andreas Fault Zone at Thousand Palms Oasis, near Palm Springs, California

Thomas E. Fumal; M. J. Rymer; Gordon G. Seitz

Paleoseismic investigations across the Mission Creek strand of the San Andreas fault at Thousand Palms Oasis indicate that four and probably five surface-rupturing earthquakes occurred during the past 1200 years. Calendar age estimates for these earthquakes are based on a chronological model that incorporates radiocarbon dates from 18 in situ burn layers and stratigraphic ordering constraints. These five earthquakes occurred in about A.D. 825 (770–890) (mean, 95% range), A.D. 982 (840–1150), A.D. 1231 (1170–1290), A.D. 1502 (1450–1555), and after a date in the range of A.D. 1520–1680. The most recent surface-rupturing earthquake at Thousand Palms is likely the same as the A.D. 1676 ± 35 event at Indio reported by Sieh and Williams (1990). Each of the past five earthquakes recorded on the San Andreas fault in the Coachella Valley strongly overlaps in time with an event at the Wrightwood paleoseismic site, about 120 km northwest of Thousand Palms Oasis. Correlation of events between these two sites suggests that at least the southernmost 200 km of the San Andreas fault zone may have ruptured in each earthquake. The average repeat time for surface-rupturing earthquakes on the San Andreas fault in the Coachella Valley is 215 ± 25 years, whereas the elapsed time since the most recent event is 326 ± 35 years. This suggests the southernmost San Andreas fault zone likely is very near failure. The Thousand Palms Oasis site is underlain by a series of six channels cut and filled since about A.D. 800 that cross the fault at high angles. A channel margin about 900 years old is offset right laterally 2.0 ± 0.5 m, indicating a slip rate of 4 ± 2 mm/yr. This slip rate is low relative to geodetic and other geologic slip rate estimates (26 ± 2 mm/yr and about 23–35 mm/yr, respectively) on the southernmost San Andreas fault zone, possibly because (1) the site is located in a small step-over in the fault trace and so the rate is not be representative of the Mission Creek fault, (2) slip is partitioned northward from the San Andreas fault and into the eastern California shear zone, and/or (3) slip is partitioned onto the Banning strand of the San Andreas fault zone.


New Zealand Journal of Geology and Geophysics | 2006

Timing of late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

Judith Zachariasen; Kelvin Berryman; Robert Langridge; Carol S. Prentice; M. J. Rymer; Mark W. Stirling; Pilar Villamor

Abstract Three trenches excavated across the central portion of the right‐lateral strike‐slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide‐dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811–2301 cal. yr BP The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ± 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3–5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single‐event displacement estimates of 5–7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150–1400 yr. Although the uncertainties in the timing of faulting events and variability in inter‐event times remain high, the time elapsed since the last event is in the order of 1–2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period.


Bulletin of the Seismological Society of America | 2006

San Andreas Fault Geometry in the Parkfield, California, Region

Robert W. Simpson; M. Barall; John Langbein; Jessica R. Murray; M. J. Rymer

In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ∼50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the northwest, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ∼6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth’s surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.


Bulletin of the Seismological Society of America | 2000

Triggered Surface Slips in the Coachella Valley Area Associated with the 1992 Joshua Tree and Landers, California, Earthquakes

M. J. Rymer

The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earth- quake was on a newly recognized fault, the East Wide Canyon fault, near the south- western edge of the Little San Bernardino Mountains. Slip associated with the Land- ers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely de- veloped as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (3 m thick) veneer of alluvium in contrast to earlier documented triggered slip events in this region, all in the deep basins of the Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right-lateral; only locally was there a minor (1 mm) vertical component of slip. Measured dextral displacement values ranged from 1 to 20 mm, with the largest amounts found in the Mecca Hills where large slip values have been measured following past triggered-slip events.


Bulletin of the Seismological Society of America | 2002

Triggered Surface Slips in the Salton Trough Associated with the 1999 Hector Mine, California, Earthquake

M. J. Rymer; John Boatwright; Linda C. Seekins; J. Douglas Yule; Jing Liu

Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (∼1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave—a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (∼1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (∼1–2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.


Bulletin of the Seismological Society of America | 2002

Geologic and Paleoseismic Study of the Lavic Lake Fault at Lavic Lake Playa, Mojave Desert, Southern California

M. J. Rymer; Gordon G. Seitz; Kristin D. Weaver; Altangerel Orgil; Geoffrey Faneros; John C. Hamilton; Christopher Goetz

Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A–C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999—the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized event may be younger. There is abundant, subtle evidence for pre-1999 activity of the Lavic Lake fault in the playa area, even though the fault was not mapped near the playa prior to the Hector Mine earthquake. The most notable indicators for long-term presence of the fault are pronounced, persistent vegetation lineaments and uplifted basalt exposures. Primary and secondary slip occurred in 1999 on two southern vegetation lineaments, and minor slip locally formed on a northern lineament; trench exposures across the northern vegetation lineament revealed the post-A.D. 260 earthquake, and a geomorphic trough extends northward into alluvial fan deposits in line with this lineament. The presence of two basalt exposures in Lavic Lake playa indicates the presence of persistent compressional steps and uplift along the fault. Fault-line scarps are additional geomorphic markers of repeated slip events in basalt exposures.


Geology | 2011

Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

Nathan A. Toké; J. Ramon Arrowsmith; M. J. Rymer; Angela Landgraf; David E. Haddad; M. M. Busch; J. A. Coyan; Alexander Hannah

Investigation of a right-laterally offset channel at the Miller9s Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/−4.3 mm/yr (1σ) for the main trace of the San Andreas fault at Parkfield, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (∼35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (


Journal of Geophysical Research | 2015

Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

Jeffrey J. McGuire; Rowena B. Lohman; Rufus D. Catchings; M. J. Rymer; M. R. Goldman

The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a few days and are localized near the MCF system.

Collaboration


Dive into the M. J. Rymer's collaboration.

Top Co-Authors

Avatar

M. R. Goldman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Rufus D. Catchings

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gary S. Fuis

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert R. Sickler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James J. Lienkaemper

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Carol S. Prentice

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Joann M. Stock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Coyn J. Criley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John D. Sims

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge