M. Jeong
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Jeong.
Physical Review Letters | 2015
Hajime Ishikawa; Makoto Yoshida; Kazuhiro Nawa; M. Jeong; S. Krämer; M. Horvatic; C. Berthier; Masashi Takigawa; Mitsuru Akaki; Atsushi Miyake; Masashi Tokunaga; Koichi Kindo; Jun-Ichi Yamaura; Yoshihiko Okamoto; Zenji Hiroi
We have synthesized high-quality single crystals of volborthite, a seemingly distorted kagome antiferromagnet, and carried out high-field magnetization measurements up to 74 T and ^{51}V NMR measurements up to 30 T. An extremely wide 1/3 magnetization plateau appears above 28 T and continues over 74 T at 1.4 K, which has not been observed in previous studies using polycrystalline samples. NMR spectra reveal an incommensurate order (most likely a spin-density wave order) below 22 T and a simple spin structure in the plateau phase. Moreover, a novel intermediate phase is found between 23 and 26 T, where the magnetization varies linearly with magnetic field and the NMR spectra indicate an inhomogeneous distribution of the internal magnetic field. This sequence of phases in volborthite bears a striking similarity to those of frustrated spin chains with a ferromagnetic nearest-neighbor coupling J_{1} competing with an antiferromagnetic next-nearest-neighbor coupling J_{2}.
Physical Review Letters | 2011
M. Jeong; F. Bert; P. Mendels; F. Duc; Andrew Harrison
We report (17)O NMR measurements in the S=1/2 (Cu(2+)) kagome antiferromagnet Herbertsmithite ZnCu(3)(OH)(6)Cl(2) down to 45 mK in magnetic fields ranging from 2 to 12 T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-Kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments ≲0.1 μ(B) and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field μ(0)H(c)=1.55(25) T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.
Physical Review Letters | 2013
M. Jeong; Hadrien Mayaffre; C. Berthier; D. Schmidiger; A. Zheludev; M. Horvatic
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines, we determine the phase boundary and the order parameter of the low-temperature (three-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1∝T(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range, which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid.
Nature Communications | 2018
Mikkel Sørensen; U. B. Hansen; Mauro Perfetti; Kasper S. Pedersen; Elena Bartolomé; Giovanna G. Simeoni; Hannu Mutka; Stéphane Rols; M. Jeong; Ivica Zivkovic; Maria Retuerto; Ana B. Arauzo; J. Bartolomé; Stergios Piligkos; Høgni Weihe; Linda H. Doerrer; Joris van Slageren; Henrik M. Rønnow; Kim Lefmann; Jesper Bendix
Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.Suppression of quantum tunneling in molecular magnets is key for their magnetic behaviours to be exploitable. Here, the authors show that tuning the geometry of lanthanide single-ion magnets leads to a suppression of the quantum tunneling, finding a three-fold reduction of the tunnel splitting upon changing the crystal field symmetry.
Physical Review B | 2015
R. Kumar; P. Khuntia; D. Sheptyakov; P. G. Freeman; Henrik M. Rønnow; B. Koteswararao; M. Baenitz; M. Jeong; A. V. Mahajan
Sc2Ga2CuO7 (SGCO) crystallizes in a hexagonal structure (space group: P63/mmc), which can be seen as an alternating stacking of single and double triangular layers. Combining neutron, x-ray, and resonant x-ray diffraction, we establish that the single triangular layers are mainly populated by nonmagnetic Ga3+ ions (85% Ga and 15% Cu), while the bilayers have comparable population of Cu2+ and Ga3+ ions (43% Cu and 57% Ga). Our susceptibility measurements in the temperature range 1.8–400 K give no indication of any spin-freezing or magnetic long-range order (LRO). We infer an effective paramagnetic moment μeff=1.79±0.09μB and a Curie-Weiss temperature θCW of about −44 K, suggesting antiferromagnetic interactions between the Cu2+(S=1/2) ions. Low-temperature neutron powder diffraction data showed no evidence for LRO down to 1.5 K. In our specific heat data as well, no anomalies were found down to 0.35 K, in the field range 0–140 kOe. The magnetic specific heat Cm, exhibits a broad maximum at around 2.5 K followed by a nearly power law Cm∝Tα behavior at lower temperatures, with α increasing from 0.3 to 1.9 as a function of field for fields up to 90 kOe and then remaining at 1.9 for fields up to 140 kOe. Our results point to a disordered ground state in SGCO.
Physical Review Letters | 2017
M. Jeong; Hadrien Mayaffre; C. Berthier; D. Schmidiger; A. Zheludev; M. Horvatic
We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/2 Heisenberg antiferromagnetic ladder compound (C_{7}H_{10}N)_{2}CuBr_{4}. The staggered order was previously evidenced from a continuous and symmetric splitting of ^{14}N NMR spectral lines on lowering the temperature below T_{c}≃330 mK, with a saturation towards ≃150 mK. Unexpectedly, the split lines begin to further separate away below T^{*}∼100 mK, while the linewidth and the line shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T_{1}^{-1} measurements. A very strong suppression reflecting the ordering, T_{1}^{-1}∼T^{5.5}, observed above T^{*}, is replaced by T_{1}^{-1}∼T below T^{*}. These original NMR features are indicative of the unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.
Physical Review B | 2015
M. Jeong; Henrik M. Rønnow
We demonstrate quantum critical scaling for an S = 1/2 Heisenberg antiferromagnetic chain compound Cu(C4H4N2)(NO3)(2) in a magnetic field around saturation, by analyzing previously reported magnetization [Y. Kono et al., Phys. Rev. Lett. 114, 037202 (2015)], thermal expansion [J. Rohrkamp et al., J. Phys.: Conf. Ser. 200, 012169 (2010)], and NMR relaxation data [H. Kuhne et al., Phys. Rev. B 80, 045110 (2009)]. The scaling of magnetization is demonstrated through collapsing the data for a range of both temperature and field onto a single curve without making any assumption for a theoretical form. The data collapse is subsequently shown to closely follow the theoretically predicted scaling function without any adjustable parameters. Experimental boundaries for the quantum critical region could be drawn from the variable range beyond which the scaled data deviate from the theoretical function. Similarly to the magnetization, quantum critical scaling of the thermal expansion is also demonstrated. Further, the spin dynamics probed via NMR relaxation rate 1/T-1 close to the saturation is shown to follow the theoretically predicted quantum critical behavior as 1/T-1 proportional to T-0.5 persisting up to temperatures as high as k(B)T similar or equal to J, where J is the exchange coupling constant.
Physical Review Letters | 2016
M. Jeong; D. Schmidiger; Hadrien Mayaffre; M. Klanjsek; C. Berthier; W. Knafo; G. Ballon; Baptiste Vignolle; S. Krämer; A. Zheludev; M. Horvatic
We present a direct NMR method to determine whether the interactions in a Tomonaga-Luttinger liquid (TLL) state of a spin-1/2 Heisenberg antiferromagnetic ladder are attractive or repulsive. For the strong-leg spin ladder compound (C_{7}H_{10}N)_{2}CuBr_{4} we find that the isothermal magnetic field dependence of the NMR relaxation rate T_{1}^{-1}(H) displays a concave curve between the two critical fields bounding the TLL regime. This is in sharp contrast to the convex curve previously reported for a strong-rung ladder, (C_{5}H_{12}N)_{2}CuBr_{4}. We show that the concavity and the convexity of T_{1}^{-1}(H), which is a fingerprint of spin fluctuations, directly reflect the attractive and repulsive fermionic interactions in the TLL, respectively. The interaction sign is alternatively determined from an indirect method combining bulk magnetization and specific heat data.
Physical Review B | 2017
Makoto Yoshida; Kazuhiro Nawa; Hajime Ishikawa; Masashi Takigawa; M. Jeong; S. Krämer; M. Horvatic; C. Berthier; K. Matsui; T. Goto; Shojiro Kimura; Takahiko Sasaki; Jun-Ichi Yamaura; Hiroyuki Yoshida; Yoshihiko Okamoto; Zenji Hiroi
We report single-crystal 51V NMR studies on volborthite Cu3V2O7(OH)2 2H2O, which is regarded as a quasi-two-dimensional frustrated magnet with competing ferromagnetic and antiferromagnetic interactions. In the 1/3 magnetization plateau above 28 T, the nuclear spin-lattice relaxation rate 1/T1 indicates an excitation gap with a large effective g factor in the range of 4.6-5.9, pointing to magnon bound states. Below 26 T where the gap has closed, the NMR spectra indicate small internal fields with a Gaussian-like distribution, whereas 1/T1 shows a power-law-like temperature dependence in the paramagnetic state, which resembles a slowing down of spin fluctuations associated with magnetic order. We discuss the possibility of an exotic spin state caused by the condensation of magnon bound states below the magnetization plateau.
Journal of Magnetic Resonance | 2017
Alessandro Valentino Matheoud; Gabriele Gualco; M. Jeong; Ivica Zivkovic; Jürgen Brugger; Henrik M. Rønnow; Jens Anders; Giovanni Boero
We report on the design and characterization of single-chip electron spin resonance (ESR) detectors operating at 50GHz, 92GHz, and 146GHz. The core of the single-chip ESR detectors is an integrated LC-oscillator, formed by a single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide semiconductor field effect transistors used as negative resistance network. On the same chip, a second, nominally identical, LC-oscillator together with a mixer and an output buffer are also integrated. Thanks to the slightly asymmetric capacitance of the mixer inputs, a signal at a few hundreds of MHz is obtained at the output of the mixer. The mixer is used for frequency down-conversion, with the aim to obtain an output signal at a frequency easily manageable off-chip. The coil diameters are 120μm, 70μm, and 45μm for the U-band, W-band, and the D-band oscillators, respectively. The experimental frequency noises at 100kHz offset from the carrier are 90Hz/Hz1/2, 300Hz/Hz1/2, and 700Hz/Hz1/2 at 300K, respectively. The ESR spectra are obtained by measuring the frequency variations of the single-chip oscillators as a function of the applied magnetic field. The experimental spin sensitivities, as measured with a sample of α,γ-bisdiphenylene-β-phenylallyl (BDPA)/benzene complex, are 1×108spins/Hz1/2, 4×107spins/Hz1/2, 2×107spins/Hz1/2 at 300K, respectively. We also show the possibility to perform experiments up to 360GHz by means of the higher harmonics in the microwave field produced by the integrated single-chip LC-oscillators.