M. K. V. Carr
Cranfield University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. K. V. Carr.
Experimental Agriculture | 2001
M. K. V. Carr
The role of water in the development and yield of the coffee crop ( Coffea arabica L.) is reviewed. A period of water stress, induced either by dry soil or dry air, is needed to prepare flower buds for blossoming that is then stimulated by rain or irrigation. Although attempts have been made to quantify the intensity and duration of stress required, these have not yet been specified in ways that are commercially useful. Water must be freely available during the period of rapid fruit expansion to ensure large, high-quality seed yields. Depending on the time and uniformity of flowering this can occur at times when rainfall is unreliable, particularly in equatorial areas. Although there are differences in their responses to drought, commercial cultivars have retained many of the characteristics adapted to the shady environment of the forests in the Ethiopian highlands in which C. arabica is believed to have originated. These include partial closure of the stomata when evaporation rates are high as a result of large leaf-to-air saturation deficits (>1.6 kPa), even if the soil is at field capacity. This is thought to be an adaptive mechanism that minimizes transpiration at high irradiances when the leaves are light-saturated. Our understanding of the actual water use of coffee crops grown in diverse ways is imperfect. For mature crops, well supplied with water, the crop coefficient (Kc) appears to have a value in the range equivalent to 0.7–0.8 times the evaporation from a US Weather Bureau Class A pan. There is some evidence that Kc values are less than this on days when evaporation rates are high (>7 mm d −1 ). For immature crops allowance has to be made for the proportion of the ground area shaded by the leaf canopy, but this alone may underestimate rates of water use. Present methods of calculating crop water requirements for the purposes of irrigation scheme design and management are imprecise and, probably, subject to large errors depending on local circumstances. The need for irrigation, and its role in controlling the timing of flowering, varies depending on the rainfall distribution, the severity of the dry season, and soil type and depth. Two geographic areas need to be distinguished in particular; those close to the equator with a bi-modal rainfall pattern and those at higher latitudes with a single rainy season and an extended dry season. Despite the international importance of irrigation in coffee crop production, the benefits to be derived from irrigation, in yield and in financial terms, have not been adequately quantified in either location. Allowable soil-water deficits have been specified for deep-rooting crops (2–3 m) on water retentive soils, usually linked to conventional over-tree sprinkler irrigation systems. Other, potentially more efficient, methods of irrigation are now available for coffee grower use, in particular, micro-jet- and drip-irrigation systems. However, there appears to be little advice, based on sound experimental work, on how to design and operate these to best advantage. There is a need to interpret and apply the scientific understanding of the role that water plays in the growth and development of the coffee plant into practical advice that can assist the grower to plan and to use water efficiently, whether rainfall or irrigation, for the production of reliable, high-quality crops. Future research opportunities are identified.
Experimental Agriculture | 2011
M. K. V. Carr
The results of research on the water relations and irrigation need of oil palm are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (West Africa) and of production of oil palm (Malaysia and Indonesia), but the crop is now moving into drier regions. The effects of water stress on the development processes of the crop are summarized followed by reviews of its water relations, water use and water productivity. The majority of the recent research published in the international literature has been conducted in Malaysia and in Francophone West Africa. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit ( ca . three years) means that causal links between environmental factors (especially water) and yield are difficult to establish. The majority of roots are found in the 0–0.6 m soil horizons, but roots can reach depths greater than 5 m and spread laterally up to 25 m from the trunk. The stomata are a sensitive indicator of plant water status and play an important role in controlling water loss. Stomatal conductance and photosynthesis are negatively correlated with the saturation deficit of the air. It is not easy to measure the actual water use of oil palm, the best estimates for mature palms suggesting crop evapotranspiration (ETc) rates of 4–5 mm d −1 in the monsoon months (equivalent to 280–350 l palm −1 d −1 ). For well-watered mature palms, crop coefficient (Kc) values are in the range 0.8–1.0. Although the susceptibility of oil palm to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation. The best estimates are 20–25 kg fresh fruit bunches ha −1 mm −1 (or a yield loss of about 10% for every 100 mm increase in the soil water deficit). These increases are only realized in the third and subsequent years after the introduction of irrigation and follow an increase in the number of fruit bunches as a result of an improvement in the sex ratio (female/total inflorescence production) and a reduction in the abortion of immature inflorescences. There is no agreement on the allowable depletion of the available soil water, or on the associated optimum irrigation interval. Drip irrigation has been used successfully on oil palm.
Experimental Agriculture | 2011
M. K. V. Carr; Jerry W. Knox
SUMMARY The results of research on the water relations and irrigation needs of sugar cane are collated and summarized in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of production of sugar cane is followed by reviews of (1) crop development, including roots; (2) plant water relations; (3) crop water requirements; (4) water productivity; (5) irrigation systems and (6) irrigation scheduling. The majority of the recent research published in the international literature has been conducted in Australia and southern Africa. Leaf/stem extension is a more sensitive indicator of the onset of water stress than stomatal conductance or photosynthesis. Possible mechanisms by which cultivars differ in their responses to drought have been described. Roots extend in depth at rates of 5–18 mm d −1 reaching maximum depths of > 4mi nca. 300 d providing there are no physical restrictions. The Penman-Monteith equation and the USWB Class A pan both give good estimates of reference crop evapotranspiration (ETo). The corresponding values for the crop coefficient (Kc) are 0.4 (initial stage), 1.25 (peak season) and 0.75 (drying off phase). On an annual basis, the total water-use (ETc) is in the range 1100–1800 mm, with peak daily rates of 6–15 mm d −1 . There is a linear relationship between cane/sucrose yields and actual evapotranspiration (ETc) over the season, with slopes of about 100 (cane) and 13 (sugar) kg (ha mm)−1 (but variable). Water stress during tillering need not result in a loss in yield because of compensatory growth on re-watering. Water can be withheld prior to harvest for periods of time up to the equivalent of twice the depth of available water in the root zone. As alternatives to traditional furrow irrigation, drag-line sprinklers and centre pivots have several advantages, such as allowing the application of small quantities of water at frequent intervals. Drip irrigation should only be contemplated when there are well-organized management systems in place. Methods for scheduling irrigation are summarized and the reasons for their limited uptake considered. In conclusion, the ‘drivers for change’, including the need for improved environmental protection, influencing technology choice if irrigated sugar cane production is to be sustainable are summarized.
Experimental Agriculture | 2011
M. K. V. Carr; G. Lockwood
SUMMARY The results of research into the water relations of cocoa are reviewed in the context of drought mitigation and irrigation need. Background information on the centres of production of the cocoa tree, and the role of water in crop development and growth processes, is followed by reviews of the effects of water stress on stomatal conductance, leaf water status and gas exchange, together with drought tolerance, crop water use and water productivity. Leaf and shoot growth occur in a series of flushes, which are synchronized by the start of the rains following a dry season (or an increase in temperature), alternating with periods of ‘dormancy’. Flowering is inhibited by water stress but synchronous flowering occurs soon after the dry season ends. Roots too grow in a rhythmic pattern similar to that of leaf flushes. Roots can reach depths of 1.5–2.0 m, but with a mass of roots in the top 0.2–0.4 m, and spread laterally >5 m from the stem. Stomata open in low light intensities and remain fully open in full sunlight in well-watered plants. Partial stomatal closure begins at a leaf water potential of about −1.5 MPa. Stomatal conductance is sensitive to dry air, declining as the saturation deficit increases from about 1.0 up to 3.5 kPa. Net photosynthesis and transpiration both consequently decline over a similar range of values. Little has been published on the actual water use of cocoa in the field. Measured ETc values equate to < 2m m d−1 only, whereas computed ETc rates of 3–6 mm d−1 in the rains and < 2m m d −1 in the dry season have also been reported. Despite its sensitivity to water stress, there is too a paucity of reliable, field-based published data of practical value on the yield responses of cocoa to drought or to irrigation. With the threat of climate change leading to less, or more erratic, rainfall in the tropics, uncertainty in yield forecasting as a result of water stress will increase. Social, technical and economic issues influencing the research agenda are discussed.
Experimental Agriculture | 2012
M. K. V. Carr
The results of research on the water relations and irrigation need of Citrus spp. are collated and reviewed in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (south-east Asia) and of production of citrus (areas with subtropical Mediterranean-type climates). The effects of water stress on the development processes of the crop are summarised followed by reviews of the plant water relations, crop water requirements, water productivity and irrigation systems. The topic is complicated by the diversity of species and cultivars (including rootstocks) that are embraced within Citrus spp. The effects of water availability on vegetative growth are understood in general terms, but the relationships have not yet been quantified. Similarly, the need for a ‘rest period’ to induce flowering is understood, but its magnitude (in terms of a drought stress index or day-degrees) does not appear to have been specified with precision. Again, the effects of drought on flower and fruit formation and retention are understood in general terms, but the relationships have not been quantified in useful ways for specific cultivars. Rooting depth and distribution have only been described in a limited number of situations. Environmental factors influencing stomatal conductances are generally well described and relationships with some growth processes established. Compared with other crops, low stomatal/canopy conductance restricts water use of Citrus spp. Some (limited) progress has been made in quantifying crop water requirements in specific conditions. Despite many recent attempts to specify how little water can be applied at specific growth stages to optimise water productivity through regulated deficit irrigation, no consensus view has emerged. The yield response to ‘full’ irrigation is of the order 6–7 kg fresh fruit m −3 as a result of an increase in the number of fruit of marketable size. There are also improvements in fruit quality. The most effective way of irrigating a citrus orchard is with a microirrigation system (drip or microsprinklers), but both methods require answers to the question: what proportion of the root zone needs to be irrigated? Both methods, especially drip, allow water to be applied (with fertigation) at very frequent intervals (including several times a day), although formal evidence of the benefits to be obtained from this level of intensification is lacking.
Experimental Agriculture | 2009
M. K. V. Carr
SUMMARY The results of research on the water relations and irrigation need of banana are collated and summarised in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the ecology of the banana and crop development processes, with emphasis on root growth and water uptake, is presented, followed by reviews of the influence of water stress on gas exchange (stomatal conductance, photosynthesis and transpiration), crop water use, and yield. Emphasis is placed on research that has international relevance and, where appropriate, three geographical areas (the tropics, subtropics and Mediterranean climates) are considered. Although roots can extend to depths of 1.0–1.5 m, the ‘effective’ depth of rooting is usually taken to be 0–0.40 m, sometimes extending to 0.60 m. Stomatal conductance is a sensitive measure of soil water availability and plant water status, whilst transpiration rates can be limited by dry air (saturation deficits >2.0 kPa). In the subtropics, there are seasonal differences in the crop coefficient (Kc) with values ranging from 0.6 in the winter months to about 1.0 Epan in the summer. It is difficult to draw generic conclusions with wide applicability from the irrigation experiments as they were reported. All the components of marketable yield can be enhanced by irrigation whilst applying insufficient water delays crop development. Annual yield responses to irrigation are variable, but water use efficiencies of 40 kg ha −1 mm −1 (fresh fruit/water applied) have been achieved in the tropics and subtropics (and elsewhere up to 80 kg ha−1 mm−1 with ‘partial’ replacement of the soil water deficit). To ensure large yields of (marketable) fruit, soil water deficits must be kept low (� m > −20 kPa at 0.2 m depth). In the subtropics, this means irrigation intervals should not exceed 2–3 d during the summer. The cooling effect of irrigation with micro-sprinklers on the soil and pseudostem temperatures, compared with drippers, can delay crop development and reduce annual yields by 30%. There is some (limited) evidence that the presence of the B genome contributes to drought tolerance. Yield response factors to irrigation for different growth stages have yet to be confirmed. Opportunities to improve the water productivity of the many, diverse banana cultivars need to be explored further.
Experimental Agriculture | 1990
William Stephens; M. K. V. Carr
Shoot extension rates and numbers recorded over an 18 month period in Tanzania from three contrasting clones were analysed to determine variation between and within seasons. Clonal differences in base temperatures for shoot extension ranged from 10.3 to 14.5°C, whilst variability in the response of shoot growth rates to temperature could be ascribed to the shoot selection technique employed. Considerable clonal variation in shoot population densities occurred, with maxima ranging from 200 to 1200 shoots m −2 . Total active shoot extension, the product of shoot growth rates and population densities, varied between 4 and 35 m m −2 week −1 , shoot numbers being the dominant component. The implications of these results are discussed in terms of shoot measurement techniques, clonal selection criteria, yield modelling and harvesting policies.
Experimental Agriculture | 1989
William Stephens; M. K. V. Carr
A simple Stress Time Index (STI) for predicting yield loss in the tea crop due to drought is proposed, based on the daily summation of the difference between the potential soil water deficit and a specified limiting value. Validation of the technique with results from a line-source irrigation experiment with a single clone in the Southern Highlands of Tanzania suggests that there is a linear relationship between STI and relative yield loss during the warm dry season. As a result of changes in the composition of the shoot population at each harvest the apparent critical deficit at which shoot growth is restricted increases from below 20 to 300 mm as the dry season progresses. The rate of yield loss with increasing STI also varies through the dry season for the same reason.
Experimental Agriculture | 1991
William Stephens; M. K. V. Carr
The yield responses of clonal tea (Clone 6/8) to irrigation and fertilizer were studied in a field experiment (based on the line-source technique) at a high altitude site (1840 m) in the Southern Highlands of Tanzania over a three-year period. In this area (latitude 8°33′S) the annual dry season can last up to six months with potential soil water deficits reaching 600 to 700 mm. In the third year of the experiments yields for the fully irrigated, well fertilized (375 kg N ha −1 ) treatments had reached 4.9 t ha −1 of made tea. These were reduced by about 2.9 kg ha −1 for each mm increase in the potential soil water deficit. For tea with little or no fertilizer applied the loss of yield was about 1.4 kg ha −1 mm −1 . These figures provide a basis for assessing the potential benefits from irrigation where other factors, such as large saturation deficits of the air, do not restrict shoot extension and yield. Yield responses to nitrogen (applied as N:P:K 20:10:10) were essentially linear up to a maximum of about 375 kg N ha −1 in the fully irrigated plots, and 300 kg N ha −1 for the unirrigated plots. Irrigation increased the proportion of crop harvested during the dry season, up to 45% in the fully irrigated treatments. The commercial implications of these results for ‘high’ and ‘low’ input producers are discussed.
Experimental Agriculture | 1993
B. Gail Smith; William Stephens; Paul J. Burgess; M. K. V. Carr
Photosynthetic rates were monitored during the warm dry season in tea Clone 6/8 in a line-source irrigation × fertilizer experiment in the Southern Highlands of Tanzania. Irrigation and fertilizer increased photosynthetic rate both by enhancing photosynthetic rate per unit leaf area (A) in healthy leaves and by increasing the proportion of sunlight intercepted by photosynthetically efficient leaves. Irrigation-induced increases in A could be accounted for by increases in stomatal conductance (g) and associated reductions in leaf temperature. Fertilizer at an annual application rate of 225 kg N ha -1 caused increases in A associated with increases in g and improved responses to ambient CO 2 concentration and illuminance (photon flux density, PFD). However, a further increase in fertilizer application rate to 375 kg N ha -1 a -1 decreased A in spite of increasing g. Light-saturation of photosynthesis occurred only at the higher fertilizer application rate. In unfertilized tea or tea fertilized at the lower rate, A decreased at a PFD of between 1400 and 2000 μmol m -2 s -l . These results are discussed in terms of the relation between photosynthesis and yield in tea. Fotosintesis en el te