Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Karppinen is active.

Publication


Featured researches published by M. Karppinen.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


IEEE Transactions on Applied Superconductivity | 2013

Development and Test of a Single-Aperture 11 T

A.V. Zlobin; N. Andreev; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; R. Bossert; G. Chlachidze; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni; Ryota Yamada

The upgrade of the LHC collimation system foresees installation of additional collimators around the LHC ring. The longitudinal space for the collimators could be provided by replacing some 8.33 T NbTi LHC main dipoles with shorter 11 T Nb3Sn dipoles compatible with the LHC lattice and main systems. To demonstrate this possibility, FNAL and CERN have started a joint program with the goal of building a 5.5 m long twin-aperture dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2 m long single-aperture demonstrator dipole with a nominal field of 11 T at the LHC nominal current of 11.85 kA and ~ 20% margin. This paper describes the design, construction, and test results of the first single-aperture Nb3Sn demonstrator dipole model.


IEEE Transactions on Applied Superconductivity | 2012

\hbox{Nb}_{3}\hbox{Sn}

E. Barzi; N. Andreev; M. Karppinen; V. Lombardo; F. Nobrega; D. Turrioni; Ryota Yamada; A.V. Zlobin

Fermilab and CERN started the development of 11 T Nb3Sn dipoles 11 m long to replace a few regular LHC NbTi dipoles and free space for cold collimators in LHC dispersion suppression (DS) areas. An important step in the design of these magnets is the development of the high aspect ratio Nb3Sn cable to achieve the nominal field of 11 T at the nominal LHC operating current of 11.85 kA with 20% margin. Keystoned cables 14.7 mm wide with and without a stainless steel core were made out of hard Cu wires and Nb3Sn strand of 0.7 mm nominal diameter. The cable optimization process was aimed at achieving both mechanical stability and minimal damage to the internal architecture of the Restacked-Rod Process (RRP) Nb3Sn strands with 127 restack design to be used in the magnet short models. Each cable was characterized electrically for transport properties degradation at high fields, for flux jump stability at low fields, and metallographically for internal damage.


IEEE Transactions on Applied Superconductivity | 2014

Demonstrator Dipole for LHC Upgrades

A.V. Zlobin; N. Andreev; Giorgio Apollinari; Bernhard Auchmann; H. Bajas; E. Barzi; R. Bossert; G. Chlachidze; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni

FNAL and CERN are performing an R&D program with the goal of developing a 5.5 m long twin-aperture 11 T Nb3Sn dipole suitable for installation in the Large Hadron Collider (LHC). An important part of the program is the development and test of a series of short single-aperture and twin-aperture models with a nominal field of 11 T at the LHC nominal current of 11.85 kA and 20% margin. This paper describes design and fabrication features, and test results of a 1 m long single-aperture Nb3Sn dipole model tested at FNAL.


IEEE Transactions on Applied Superconductivity | 2012

Development and Fabrication of

A.V. Zlobin; N. Andreev; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; R. Bossert; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni; Ryota Yamada

The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb3Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at ~11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb3Sn strand and cable parameters and test results are also reported.


IEEE Transactions on Applied Superconductivity | 2013

{\rm Nb}_{3}{\rm Sn}

N. Andreev; Giorgio Apollinari; Bernhard Auchmann; E. Barzi; R. Bossert; G. Chlachidze; J. DiMarco; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni; G. Velev; A.V. Zlobin

The upgrade of the Large Hadron Collider (LHC) collimation system foresees additional collimators in the LHC dispersion suppressor areas. The longitudinal space for the collimators could be provided by replacing some NbTi LHC main dipoles with shorter 11 T Nb3Sn dipoles. To demonstrate this possibility, Fermilab and CERN have started a joint program to develop a Nb3Sn dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m-long, 60-mm-bore, single-aperture demonstrator dipole with the nominal field of 11 T at the LHC operational current of 11.85 kA. This paper presents the results of magnetic measurements of the single-aperture Nb3Sn demonstrator dipole including geometrical harmonics, coil magnetization, and iron saturation effects. The experimental data are compared with the magnetic calculations.


IEEE Transactions on Applied Superconductivity | 2012

Rutherford Cable for the 11 T DS Dipole Demonstrator Model

M. Bajko; B. Bordini; S. Canfer; G. Ellwood; J. Feuvrier; Michael Guinchard; M. Karppinen; C. Kokkinos; P. Manil; Attilio Milanese; L. Oberli; J. C. Perez; Federico Regis; G. de Rijk

The Short Model Coil (SMC) assembly has been designed, as test bench for short racetrack coils wound with cable. The mechanical structure comprises an iron yoke surrounded by a 20 mm thick aluminum alloy shell, and includes four loading pads that transmit the required pre-compression from the outer shell into the two coils. The outer shell is pre-tensioned with mechanical keys that are inserted with the help of pressurized bladders and two 30 mm diameter aluminum alloy rods provide the axial loading to the coil ends. The outer shell, the axial rods, and the coils are instrumented with strain gauges, which allow precise monitoring of the loading conditions during the assembly and at cryogenic temperature during the magnet test. Two SMC assemblies have been completed and cold tested in the frame of a European collaboration between CEA (FR), CERN and STFC (UK) and with the technical support from LBNL (US). This paper describes the main features of the SMC assembly, the experience from the dummy assemblies, the fabrication of the coils, and discusses the test results of the cold tests showing a peak field of 12.5 T at 1.9 K after training.


IEEE Transactions on Applied Superconductivity | 2012

Quench Performance of a 1 m Long Single-Aperture 11 T

G. Kirby; Bernhard Auchmann; Erwin Bielert; M. Durante; P. Fessia; M. Karppinen; B. Lepoittevin; C. Lorin; Sebastien Luzieux; J. C. Perez; Stephan Russenschuck; T. Sahner; Michel Segreti; D. Smekens

The design and construction of a wide-aperture, superconducting quadrupole magnet for the LHC insertion region is part of a study towards a luminosity upgrade of the LHC at CERN. The engineering design of components and tooling, the procurement, and the construction work presented in this paper includes innovative features such as more porous cable insulation, a new collar structure allowing horizontal assembly with a hydraulic collaring press, tuning shims for the adjustment of field quality, a fishbone like structure for the ground-plane insulation, and an improved quench-heater design. Rapid prototyping of coil-end spacers and trial-coil winding led to improved shapes, thus avoiding the need to impregnate the ends with epoxy resin, which would block the circulation of helium. The magnet construction follows established procedures for the curing and assembly of the coils, in order to match the workflow established in CERNs “large magnet facility.” This requirement led to the design and procurement of a hydraulic press allowing for both a vertical and a horizontal position of the coil-collar pack, as well as a collapsible assembly mandrel, which guarantees the packs four-fold symmetry during collaring. The assembly process has been validated with the construction of two short models, instrumented with strain gauges and capacitive pressure transducers. This also determines the final parameters for coil curing and shim sizes.


IEEE Transactions on Applied Superconductivity | 2002

\hbox{Nb}_{3}\hbox{Sn}

Albert Ijspeert; M. Allitt; A. Hilaire; M. Karppinen; J. Mazet; J. C. Perez; J. Salminen; M. Karmarker; A. Puntambekar

The Large Hadron Collider (LHC) needs more than 6000 superconducting corrector magnets. These must be sufficiently powerful, have enough margin, be compact and of low cost. The development of the 11 types of magnets was spread over several years and included the magnetic and mechanical design as well as prototype building and testing. It gradually led to the systematic application of a number of interesting construction principles that allow to realize the above mentioned goals. The paper describes the techniques developed and presently used in practically all the LHC corrector magnets ranging from dipoles to dodecapoles.


IEEE Transactions on Applied Superconductivity | 2016

Dipole Model for LHC Upgrades

F. Savary; E. Barzi; B. Bordini; L. Bottura; G. Chlachidze; D. Ramos; S. Izquierdo Bermudez; M. Karppinen; Friedrich Lackner; Christian Loffler; R. Moron-Ballester; A. Nobrega; J. C. Perez; H. Prin; D. Smekens; G. de Rijk; Stefano Redaelli; L. Rossi; G. Willering; A.V. Zlobin; M. Giovannozzi

The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. The overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.

Collaboration


Dive into the M. Karppinen's collaboration.

Researchain Logo
Decentralizing Knowledge