Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Chlachidze is active.

Publication


Featured researches published by G. Chlachidze.


IEEE Transactions on Applied Superconductivity | 2009

Fabrication and Test of LARP Technological Quadrupole Models of TQC Series

R. Bossert; Giorgio Ambrosio; N. Andreev; E. Barzi; G. Chlachidze; S. Feher; V. S. Kashikhin; Vadim V. Kashikhin; M.J. Lamm; A. Nobrega; I. Novitski; D. Orris; M. Tartaglia; Alexander V. Zlobin; S. Caspi; D.R. Dietderich; P. Ferracin; A.R. Hafalia; GianLuca Sabbi; A. Ghosh; P. Wanderer

In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9 K to 4.5 K.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


IEEE Transactions on Applied Superconductivity | 2013

Cold Test Results of the LARP HQ

H. Bajas; Giorgio Ambrosio; Michael Anerella; M. Bajko; R. Bossert; S. Caspi; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; Olaf Dunkel; H. Felice; P. Ferracin; J. Feuvrier; Lucio Fiscarelli; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; Stephan Russenschuck; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The high gradient quadrupole magnet is a 120-mm-aperture, 1-m-long Nb3Sn quadrupole developed by the LHC Accelerator Research Program collaboration in support of the High-Luminosity LHC project. Several tests were performed at Lawrence Berkeley National Laboratory in 2010-2011 achieving a maximum gradient of 170 T/m at 4.4 K. As a next step in the program, the latest model (HQ01e) was sent to CERN for testing at 1.9 K. As part of this test campaign, the magnet training has been done up to a maximum current of 16.2 kA corresponding to 85% of the short sample limit. The ramp rate dependence of the quench current is also identified. The efficiency of the quench heaters is then studied at 4.2 K and at 1.9 K. The analyses of the magnet resistance evolution during fast current discharge showed evidence of quench whereas high energy quenches have been successfully achieved and sustained with no dump resistor.


IEEE Transactions on Applied Superconductivity | 2013

\hbox{Nb}_{3} \hbox{Sn}

J. DiMarco; G. Chlachidze; A. Makulski; D. Orris; M. Tartaglia; J.C. Tompkins; G. Velev; X. Wang

Rotating coil probes are essential for measuring harmonic multipole fields of accelerator magnets. A fundamental requirement of these probes is their accuracy, which typically implies that the probes need to be very stiff and straight, have highly accurate knowledge of the placement of windings, and an ability to buck the fundamental fields well in order to suppress the effects of vibrations. Ideally, for an R&D test environment, probe fabrication should also be easy and low-cost, so that probe parameters (type, length, number of turns, radius, etc.) can be customized to the magnet requiring test. Such facility allows measurement optimization for magnets of various multipolarity, aperture size, cable twist pitch, etc. The accuracy and construction flexibility aspects of probe development, however, are often at odds with each other. This paper reports on application of printed-circuit board and fused-deposition modeling technologies, and what these offer to the fabrication of magnetic measurement probe systems.


IEEE Transactions on Applied Superconductivity | 2012

Quadrupole Magnet at 1.9 K

H. Felice; G. Ambrosio; M. Anerella; D. Bocian; R. Bossert; S. Caspi; B. Collins; D. W. Cheng; G. Chlachidze; D.R. Dietderich; P. Ferracin; A. Godeke; A. Ghosh; A.R. Hafalia; J. Joseph; J. Krishnan; M. Marchevsky; G. Sabbi; J. Schmalzle; P. Wanderer; X. Wang; A.V. Zlobin

In the past two years the US LARP program carried out five tests on a quadrupole magnet aimed at the high luminosity upgrade of Large Hadron Collider (HiLumi-LHC). The 1-meter long, 120 mm bore IR quadrupole magnet (HQ) with a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T is part of the US LHC Accelerator Research Program (LARP). In a series of tests, carried out at 4.4 K, the magnet reached a maximum “short-sample” performance of 86%. The tests exposed several shortcomings that are now being addressed in a Research & Development program. This paper summarizes the magnet test results, reveals findings, R&D actions and future improvements.


IEEE Transactions on Applied Superconductivity | 2014

Application of PCB and FDM Technologies to Magnetic Measurement Probe System Development

G. Chlachidze; Giorgio Ambrosio; Michael Anerella; F. Borgnolutti; R. Bossert; S. Caspi; D. W. Cheng; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A. Godeke; A.R. Hafalia; M. Marchevsky; D. Orris; Pallab Kanti Roy; G. Sabbi; T. Salmi; J. Schmalzle; C. Sylvester; M. Tartaglia; J.C. Tompkins; P. Wanderer; X. Wang; A.V. Zlobin

In preparation for the high luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) is developing a new generation of large aperture high-field quadrupoles based on Nb3Sn technology. One meter long and 120 mm diameter HQ quadrupoles are currently produced as a step toward the eventual aperture of 150 mm. Tests of the first series of HQ coils revealed the necessity for further optimization of the coil design and fabrication process. A new model (HQ02) has been fabricated with several design modifications, including a reduction of the cable size and an improved insulation scheme. Coils in this magnet are made of a cored cable using 0.778 mm diameter Nb3Sn strands of RRP 108/127 subelement design. The HQ02 magnet has been fabricated at LBNL and BNL, and then tested at Fermilab. This paper summarizes the performance of HQ02 at 4.5 K and 1.9 K temperatures.


IEEE Transactions on Applied Superconductivity | 2016

Impact of Coil Compaction on

P. Ferracin; G. Ambrosio; M. Anerella; A. Ballarino; H. Bajas; M. Bajko; B. Bordini; R. Bossert; D. W. Cheng; D.R. Dietderich; G. Chlachidze; L D Cooley; H. Felice; A. Ghosh; R. Hafalia; E F Holik; S. Izquierdo Bermudez; P. Fessia; Philippe Grosclaude; Michael Guinchard; M. Juchno; S. Krave; Friedrich Lackner; M. Marchevsky; Vittorio Marinozzi; F. Nobrega; L. Oberli; Heng Pan; Jorge Pérez; H. Prin

The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating at magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnets conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Européen pour la Recherche Nucléaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. This paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.


IEEE Transactions on Applied Superconductivity | 2011

{\hbox {Nb}}_{3}{\hbox {Sn}}

S. Caspi; G. Ambrosio; M. Anerella; E. Barzi; B. Bingham; R. Bossert; D. W. Cheng; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A.R. Hafalia; C. R. Hannaford; J. Joseph; V.V. Kashikhin; G. Sabbi; J. Schmalzle; P. Wanderer; W. Xiaorong; A.V. Zlobin

In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.


IEEE Transactions on Applied Superconductivity | 2014

LARP HQ Magnet

A.V. Zlobin; N. Andreev; Giorgio Apollinari; Bernhard Auchmann; H. Bajas; E. Barzi; R. Bossert; G. Chlachidze; M. Karppinen; F. Nobrega; I. Novitski; L. Rossi; D. Smekens; D. Turrioni

FNAL and CERN are performing an R&D program with the goal of developing a 5.5 m long twin-aperture 11 T Nb3Sn dipole suitable for installation in the Large Hadron Collider (LHC). An important part of the program is the development and test of a series of short single-aperture and twin-aperture models with a nominal field of 11 T at the LHC nominal current of 11.85 kA and 20% margin. This paper describes design and fabrication features, and test results of a 1 m long single-aperture Nb3Sn dipole model tested at FNAL.


IEEE Transactions on Applied Superconductivity | 2015

Performance of HQ02, an Optimized Version of the 120 mm

H. Bajas; G. Ambrosio; M. Anerella; M. Bajko; R. Bossert; L. Bottura; S. Caspi; D. W. Cheng; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; J. Feuvrier; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; E. Ravaioli; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The HQ magnet is a 120-mm aperture, 1-m-long Nb3Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in five assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was tested at Fermilab where it reached 98% of the short sample limit at 4.5 K with a gradient of 182 T/m in 2013. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for full training at 1.9 K. In this paper, we present a comprehensive summary of the HQ02 test results including: magnet training at 1.9 K with increased preload; quench origin and propagation; and ramp rate dependence. A series of powering tests was also performed to assess changes in magnet performance with a gradual increase of the MIITs. We also present the results of quench protection studies using different setting for detection, heater coverage, energy extraction and the coupling-loss induced quench (CLIQ) system.

Collaboration


Dive into the G. Chlachidze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Felice

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Sabbi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge