Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Katharine Rudd is active.

Publication


Featured researches published by M. Katharine Rudd.


Genetics in Medicine | 2011

An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities

Erin B. Kaminsky; Vineith Kaul; Justin Paschall; Deanna M. Church; Brian Bunke; Dawn Kunig; Daniel Moreno-De-Luca; Andres Moreno-De-Luca; Jennifer G. Mulle; Stephen T. Warren; Gabriele Richard; John Compton; Amy E. Fuller; Troy J. Gliem; Shuwen Huang; Morag N. Collinson; Sarah J. Beal; Todd Ackley; Diane L. Pickering; Denae M. Golden; Emily Aston; Heidi Whitby; Shashirekha Shetty; Michael R. Rossi; M. Katharine Rudd; Sarah T. South; Arthur R. Brothman; Warren G. Sanger; Ramaswamy K. Iyer; John A. Crolla

Purpose: Copy number variants have emerged as a major cause of human disease such as autism and intellectual disabilities. Because copy number variants are common in normal individuals, determining the functional and clinical significance of rare copy number variants in patients remains challenging. The adoption of whole-genome chromosomal microarray analysis as a first-tier diagnostic test for individuals with unexplained developmental disabilities provides a unique opportunity to obtain large copy number variant datasets generated through routine patient care.Methods: A consortium of diagnostic laboratories was established (the International Standards for Cytogenomic Arrays consortium) to share copy number variant and phenotypic data in a central, public database. We present the largest copy number variant case-control study to date comprising 15,749 International Standards for Cytogenomic Arrays cases and 10,118 published controls, focusing our initial analysis on recurrent deletions and duplications involving 14 copy number variant regions.Results: Compared with controls, 14 deletions and seven duplications were significantly overrepresented in cases, providing a clinical diagnosis as pathogenic.Conclusion: Given the rapid expansion of clinical chromosomal microarray analysis testing, very large datasets will be available to determine the functional significance of increasingly rare copy number variants. This data will provide an evidence-based guide to clinicians across many disciplines involved in the diagnosis, management, and care of these patients and their families.


PLOS Genetics | 2011

Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells

Keith E. Szulwach; Xuekun Li; Yujing Li; Chun-Xiao Song; Ji Woong Han; Sangsung Kim; Sandeep Namburi; Karen E. Hermetz; Julie J. Kim; M. Katharine Rudd; Young-sup Yoon; Bing Ren; Chuan-Chuan He; Peng-Peng Jin

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


American Journal of Human Genetics | 2010

Microdeletions of 3q29 Confer High Risk for Schizophrenia

Jennifer G. Mulle; Anne Dodd; John A. McGrath; Paula Wolyniec; Adele A. Mitchell; Amol Carl Shetty; Nara Sobreira; David Valle; M. Katharine Rudd; Glen A. Satten; David J. Cutler; Ann E. Pulver; Stephen T. Warren

Schizophrenia (SZ) is a severe psychiatric illness that affects approximately 1% of the population and has a strong genetic underpinning. Recently, genome-wide analysis of copy-number variation (CNV) has implicated rare and de novo events as important in SZ. Here, we report a genome-wide analysis of 245 SZ cases and 490 controls, all of Ashkenazi Jewish descent. Because many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases, with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3-1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, because increasing evidence suggests an overlap of specific rare copy-number variants (CNVs) between autism and SZ. By combining our data with prior CNV studies of SZ and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with SZ (p = 0.02) and an odds ratio estimate of 17 (95% confidence interval: 1.36-1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior SZ family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for SZ susceptibility.


Nature Cell Biology | 2013

Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency

Tao Wang; Hao Wu; Yujing Li; Keith E. Szulwach; Li Lin; Xuekun Li; I-Ping Chen; Ian S. Goldlust; Stormy J. Chamberlain; Ann Dodd; He Gong; Gene Ananiev; Ji Woong Han; Young-sup Yoon; M. Katharine Rudd; Miao Yu; Chun-Xiao Song; Chuan He; Qiang Chang; Stephen T. Warren; Peng Jin

Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem cells (ESCs). Human ESCs (hESCs) contain 5-hydroxymethylcytosine (5hmC), which is generated through the oxidation of 5-methylcytosine by the TET enzyme family. Here we show that 5hmC levels increase significantly during reprogramming to human iPSCs mainly owing to TET1 activation, and this hydroxymethylation change is critical for optimal epigenetic reprogramming, but does not compromise primed pluripotency. Compared with hESCs, we find that iPSCs tend to form large-scale (100 kb–1.3 Mb) aberrant reprogramming hotspots in subtelomeric regions, most of which exhibit incomplete hydroxymethylation on CG sites. Strikingly, these 5hmC aberrant hotspots largely coincide (∼ 80%) with aberrant iPSC–ESC non-CG methylation regions. Our results suggest that TET1-mediated 5hmC modification could contribute to the epigenetic variation of iPSCs and iPSC–hESC differences.


PLOS Genetics | 2007

Elevated Rates of Sister Chromatid Exchange at Chromosome Ends

M. Katharine Rudd; Cynthia Friedman; Sean S Parghi; Elena V. Linardopoulou; Li Hsu; Barbara J. Trask

Chromosome ends are known hotspots of meiotic recombination and double-strand breaks. We monitored mitotic sister chromatid exchange (SCE) in telomeres and subtelomeres and found that 17% of all SCE occurs in the terminal 0.1% of the chromosome. Telomeres and subtelomeres are significantly enriched for SCEs, exhibiting rates of SCE per basepair that are at least 1,600 and 160 times greater, respectively, than elsewhere in the genome.


American Journal of Human Genetics | 2015

Next-Generation Sequencing of Duplication CNVs Reveals that Most Are Tandem and Some Create Fusion Genes at Breakpoints

Scott Newman; Karen E. Hermetz; Brooke Weckselblatt; M. Katharine Rudd

Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb-25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis.


Human Molecular Genetics | 2009

Segmental Duplications Mediate Novel, Clinically Relevant Chromosome Rearrangements

M. Katharine Rudd; Julia Keene; Brian Bunke; Erin B. Kaminsky; Margaret P Adam; Jennifer G. Mulle; David H. Ledbetter; Christa Lese Martin

Copy number studies have led to an explosion in the discovery of new segmental duplication-mediated deletions and duplications. We have analyzed copy number changes in 2419 patients referred for clinical array comparative genomic hybridization studies. Twenty-three percent of the abnormal copy number changes we found are immediately flanked by segmental duplications > or =10 kb in size and > or =95% identical in direct orientation, consistent with deletions and duplications generated by non-allelic homologous recombination. Here, we describe copy number changes in five previously unreported loci with genomic organization characteristic of NAHR-mediated gains and losses; namely, 2q11.2, 7q36.1, 17q23, 2q13 and 7q11.21. Deletions and duplications of 2q11.2, deletions of 7q36.1 and deletions of 17q23 are interpreted as pathogenic based on their genomic size, gene content, de novo inheritance and absence from control populations. The clinical significance of 2q13 deletions and duplications is still emerging, as these imbalances are also found in phenotypically normal family members and control individuals. Deletion of 7q11.21 is a benign copy number change well represented in control populations and copy number variation databases. Here, we discuss the genetic factors that can modify the phenotypic expression of such gains and losses, which likely play a role in these and other recurrent genomic disorders.


Molecular and Cellular Biology | 2003

Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

M. Katharine Rudd; Robert W. Mays; Stuart Schwartz; Huntington F. Willard

ABSTRACT Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.


American Journal of Human Genetics | 2010

Identification of a Recurrent Microdeletion at 17q23.1q23.2 Flanked by Segmental Duplications Associated with Heart Defects and Limb Abnormalities

Blake C. Ballif; Aaron Theisen; Jill A. Rosenfeld; Ryan Traylor; Julie M. Gastier-Foster; Devon Lamb Thrush; Caroline Astbury; Dennis Bartholomew; Kim L. McBride; Robert E. Pyatt; Kate P. Shane; Wendy Smith; Valerie Banks; William B. Gallentine; Pamela Brock; M. Katharine Rudd; Margaret P Adam; Julia Keene; John A. Phillips; Jean Pfotenhauer; Gordon C. Gowans; Pawel Stankiewicz; Bassem A. Bejjani; Lisa G. Shaffer

Segmental duplications, which comprise approximately 5%-10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are approximately 2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is approximately 2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome.


Genetics in Medicine | 2009

Variability in interpreting and reporting copy number changes detected by array-based technology in clinical laboratories

Karen D. Tsuchiya; Lisa G. Shaffer; Swaroop Aradhya; Julie M. Gastier-Foster; Ankita Patel; M. Katharine Rudd; Julie Sanford Biggerstaff; Warren G. Sanger; Stuart Schwartz; James Tepperberg; Erik C. Thorland; Beth A. Torchia; Arthur R. Brothman

Purpose: The purpose of this study was to assess the variability in interpretation and reporting of copy number changes that are detected by array-based technology in the clinical laboratory.Methods: Thirteen different copy number changes, detected by array comparative genomic hybridization, that have not been associated with an abnormal phenotype in the literature were evaluated by directors from 11 different clinical laboratories to determine how they would interpret and report the findings.Results: For none of the thirteen copy number changes was there complete agreement in the interpretation of the clinical significance of the deletion or duplication. For some cases, the interpretations ranged from normal to abnormal.Conclusion: There is a need for more specific guidelines for interpreting and reporting copy number changes detected by array-based technology to clearly and more consistently communicate the clinical significance of these findings to ordering providers.

Collaboration


Dive into the M. Katharine Rudd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian S. Goldlust

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jannine D. Cody

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge