Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M Kerr is active.

Publication


Featured researches published by M Kerr.


Scientific Reports | 2015

Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy

Fada Guan; Lawrence Bronk; U Titt; Steven H. Lin; Dragan Mirkovic; M Kerr; X. Ronald Zhu; Jeffrey Dinh; Mary Sobieski; Clifford Stephan; C Peeler; R Taleei; Radhe Mohan; David R. Grosshans

The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE.


Medical Physics | 2013

Quality assurance of proton beams using a multilayer ionization chamber system

S Dhanesar; Narayan Sahoo; M Kerr; M. Brad Taylor; P Summers; X. Ronald Zhu; F Poenisch; M Gillin

PURPOSE The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system. METHODS The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning. RESULTS The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within -0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements. CONCLUSIONS Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.


Physics in Medicine and Biology | 2016

Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.

Jongmin Cho; Carlos Gonzalez-Lepera; N Manohar; M Kerr; Sunil Krishnan; S Cho

Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the currently investigated conditions that are considered clinically relevant, PIXE, PIGE, and activation products contribute minimally to GNP/GNR-mediated proton dose enhancement, whereas Auger/secondary electrons contribute significantly but only at short distances (<100 nm) from GNPs/GNRs.


Medical Physics | 2013

Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine.

Dennis Mackin; Y Li; Michael B. Taylor; M Kerr; Charles Holmes; Narayan Sahoo; F Poenisch; Heng Li; Jim Lii; Richard A. Amos; R Wu; Kazumichi Suzuki; M Gillin; X. Ronald Zhu; Xiaodong Zhang

PURPOSE The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework. METHODS The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses. Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores. RESULTS The authors compared measured and calculated dose planes using the relative depth, z∕R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, -0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipses calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement. CONCLUSIONS The authors found HPlusQA to be reasonably effective (79% ± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.


International Journal of Particle Therapy | 2014

Spot-Scanning Proton Therapy Patient- Specific Quality Assurance: Results from 309 Treatment Plans

Dennis Mackin; X. Ronald Zhu; F Poenisch; Heng Li; Narayan Sahoo; M Kerr; Charles Holmes; Yupeng Li; M Lii; R Wu; Kazumichi Suzuki; M Gillin; Steven J. Frank; David R. Grosshans; Xiaodong Zhang

Abstract Purpose: We report the outcomes of patient-specific quality assurance (PSQA) for spot-scanning proton therapy (SSPT) treatment plans by disease site. Patients and Methods: We analyzed quality assurance outcomes for 309 SSPT plans. The PSQA measurements consisted of 2 parts: (1) an end-to-end test in which the beam was delivered at the prescribed gantry angle and (2) dose plane measurements made from gantry angle 270°. The HPlusQ software was used for gamma analysis of the dose planes using dose-tolerance and distance-to-agreement levels of 2%, 2 mm and 3%, 3 mm, respectively. Passing was defined as a gamma score <1 in at least 90% of the pixels. Results: The overall quality assurance measurement passing rate was 96.2% for the gamma index criteria of 3%, 3 mm but fell to 85.3% when the criteria were tightened to 2%, 2 mm. The passing rate was dependent on the treatment site. With the 3%, 3 mm criteria, the passing rate was 95% for head-and-neck treatment plans and 100% for prostate plans. No signi...


Practical radiation oncology | 2015

Proton partial breast irradiation in the supine position: Treatment description and reproducibility of a multibeam technique

Eric A. Strom; Richard A. Amos; Simona F. Shaitelman; M Kerr; Karen E. Hoffman; Benjamin D. Smith; Welela Tereffe; Michael C. Stauder; George H. Perkins; Mayankumar D. Amin; Xiaochun Wang; F Poenisch; Valentina Ovalle; Thomas A. Buchholz; Gildy Babiera; Wendy A. Woodward

PURPOSE Proton-accelerated partial breast irradiation (APBI) is early in its developmental phase without standardized treatment parameters. We report an approach to multibeam proton APBI using a universally available supine setup and deliberate beam arrangement strategy to limit the total area of skin receiving a full dose while being robust for interfraction variation. METHODS AND MATERIALS Thirty-three American Society for Radiation Oncology consensus-suitable/cautionary APBI candidates were treated using a passively scattered proton beam between 2010 and 2014 to 34 Gy relative biological effectiveness in 10 fractions twice daily. All patients were immobilized in a Vac-Lok cradle, typically with the arm down, and adducted to mound the breast and facilitate multiple, optimal en face beams. Radiopaque wires were placed on the surgical scar and 3 markers separate from the scar were placed elsewhere on the breast. All markers were used for each setup and removed before treatment. Marker displacement, wire rotation, and wire displacement were recorded from 10 random patients (100 orthogonal films). A 15-mm expansion was made to the tumor bed to obtain a clinical target volume, and followed by a 5-mm skin contraction and exclusion of the chest wall. A radial planning target volume margin of 5 mm was used. RESULTS Across 100 pretreatment images, median displacement of 3 distinct skin set-up markers was 3, 4, and 3 mm. Displacement of the scar wire in the X and Y direction was 0 and 1 mm, respectively. Among 28 verification scans performed, only 1 resulted in adaptive planning because of the initial presence of an air pocket in the lumpectomy cavity that resolved spontaneously during treatment. CONCLUSIONS APBI proton treatment using a supine approach was largely reproducible. Inter-fraction variation demonstrates 5-mm radial planning margins were adequate; however, outliers do occur and films should be reviewed critically and in real time. This technique is straightforward and could be used at any proton facility without the need for specialized equipment.


Medical Physics | 2013

TU‐A‐108‐07: Design and Verification of a Heterogeneous Proton Equivalent Thorax Phantom for Use in End‐To‐End Assessment of Pencil Beam Proton Therapy

J Neihart; Narayan Sahoo; P Balter; P Summers; Matthew R. Palmer; M Kerr; D Followill

PURPOSE Design and commission a dynamic proton-equivalent lung phantom for implementation as an end-to-end audit tool for credentialing proton therapy centers participating in proton lung clinical trials. METHODS Phantom materials were tested and chosen with relative stopping powers (RSP) similar to those found on the Eclipse tissue calibration curve. One material was determined to be in good agreement with the Eclipse HU vs. RSP calibration curve to simulate bone. A phantom was designed with materials that could be imaged, planned, and treated without need for manual adjustment of HU. The lung target was designed to simulate 2cm respiratory motion. The phantom was simulated on a 4DCT and planned on the resulting average CT images. A proton pencil beam plan was generated to cover the ITV and spare other structures, and was verified by 2-D ion chamber array QA measurements. Image-guided spot scanned therapy was delivered to the phantom. The film and TLD within the moving dosimetry insert were read and registered to the planned 3D dose distribution. Using TLD for absolute dose and film for dose distribution, a gamma analysis was performed in the sagittal, coronal, and axial planes. RESULTS A bone equivalent material was found with an agreement of 0.9% to Eclipse calculation. For the two initial spot scanned proton beam treatment deliveries, the Gamma index ranged from 86% to 73% at ±5%/5mm about an RPC/Institution ratio of 0.97 for all film planes. The regions of highest failure were found to be in the distal region beyond the target volume. The measured vs. calculated dose ratio ranged from 0.96-1.01 with an average of 0.98. CONCLUSION A proton-equivalent lung phantom, with a dynamic thoracic target, was designed and tested as an audit tool for credentialing proton therapy centers. Spot scanned therapy without motion management was determined inadequate for 2cm motion. This work was supported by Public Health Service grants CA010953, CA081647, and CA21661 awarded by the National Cancer Institute, United States Department of Health and Human Services.


International Journal of Particle Therapy | 2018

RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies

Fada Guan; Changran Geng; Duo Ma; Lawrence Bronk; M Kerr; Yuting Li; Drake Gates; Benjamin Kroger; Narayan Sahoo; U Titt; David R. Grosshans; Radhe Mohan

Purpose The purpose of the current study was (1) to develop a straightforward and rapid method to incorporate a dose-averaged linear energy transfer (LET d )-based biological effect model into a dose optimization algorithm for scanned protons; and (2) to apply a novel beam delivery strategy with increased LET d within the target, thereby enhancing the biological effect predicted using the selected relative biological effectiveness (RBE) model. Materials and Methods We first generated pristine dose Bragg curves in water and their corresponding LET d distributions for 94 groups of proton beams, using experimentally validated Geant4 Monte Carlo simulations. Next, we developed 1-dimensional dose optimization algorithms by using the Python programming language. To calculate the RBE of protons for biological dose optimization, we invoked the McNamara RBE model and applied the radiobiological parameters of the lung cancer H460 cell line with 137Cs reference photons. Results High-accuracy optimization results were obtained. The relative difference between the delivered dose and the prescribed dose was approximately within ±1.0% in the target. In addition, we obtained the RBE enhancement within the target by applying the LET-painting technique. For example, considering a simple case in which 2 opposed downslope dose fields were superimposed to form a uniform dose in the 5- to 10-cm target region, the center RBE was 1.23 ± 0.01, which was greater than the center RBE of 1.16 ± 0.01 found when using the traditional method of delivering 2 opposed flat dose fields. Conclusion We have successfully developed an easy-to-implement method to perform the biological dose optimization procedure by invoking the McNamara RBE model in the iteration process using the Python programming language. According to the RBE model predictions, we conclude that the increased target LET d enhances the RBE. The accuracy of the RBE model predictions needs to be validated in radiobiological experiments.


Medical Physics | 2016

SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields

Y Li; A Gautam; M Kerr; Craig Martin; F Poenisch; X Zhang; Heng Li; R Wu; X Zhu; M Gillin; Narayan Sahoo

PURPOSE To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). METHODS An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All the measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. RESULTS Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. CONCLUSION The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.


Medical Physics | 2016

WE‐H‐BRA‐05: Investigation of LET Spectral Dependence of the Biological Effects of Therapeutic Protons

Fada Guan; Lawrence Bronk; M Kerr; X Wang; Y Li; C Peeler; Narayan Sahoo; D Patel; Dragan Mirkovic; U Titt; David R. Grosshans; Radhe Mohan

PURPOSE To investigate the dependence of biologic effect (BE) of therapeutic protons on LET spectra by comparing BEs with equal dose-averaged LET (LETd) derived from different LET spectra using high-throughput in vitro clonogenic survival assays. METHODS We used Geant4 to design the relevant experimental setups and perform the dose, LETd, and LET spectra calculations for spot-scanning protons. The clonogenic assay was performed using the H460 lung cancer cell line cultured in 96-well plates. In the first experimental setup (S1), cells were irradiated using 127.4 MeV protons with a 93.22 mm Lucite buildup resulting in a LETd value of 3.4 keV/µm in the cell layer. In the second experimental setup (S2), cells were irradiated by a combination of 127.4 MeV and 136.4 MeV protons with a 96.61 mm Lucite buildup. The LETd values in the cell layer were 11.4 keV/µm and 1.5 keV/µm respectively, but an average LETd of 3.4 keV/µm was obtained by adjusting the relative fluence of each beam. Ten discrete dose levels with 0.5 Gy increments were delivered. RESULTS In the two setups, the energies or LET spectra were different but resulted in identical LETd values. We quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous experiments) events in the LET spectra separately for these two setups as 3.2% and 10.5%. The biologic effects at each identical dose level yielded statistically significant different survival curves (extra sum-of-squares F-test, P<0.0001). The second setup with a higher contribution from high-LET events exhibited the higher biologic effect with a dose enhancement factor of 1.17±0.03 at 0.10 surviving fraction. CONCLUSION The dose-averaged LET may not be an accurate indicator of the biological effects of protons. Detailed LET spectra may need to be considered explicitly to accurately quantify the biologic effects of protons. Funding Support: U19 CA021239-35, R21 CA187484-01 and MDACC-IRG.

Collaboration


Dive into the M Kerr's collaboration.

Top Co-Authors

Avatar

Narayan Sahoo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

M Gillin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

F Poenisch

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Fada Guan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David R. Grosshans

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

U Titt

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Radhe Mohan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

X Zhu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dragan Mirkovic

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Heng Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge