Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Kozai is active.

Publication


Featured researches published by M. Kozai.


The Astrophysical Journal | 2014

LONG-TERM VARIATION OF THE SOLAR DIURNAL ANISOTROPY OF GALACTIC COSMIC RAYS OBSERVED WITH THE NAGOYA MULTI-DIRECTIONAL MUON DETECTOR

K. Munakata; M. Kozai; C. Kato; Jozsef Kota

We analyze the three-dimensional anisotropy of the galactic cosmic ray (GCR) intensities observed independently with a muon detector at Nagoya in Japan and neutron monitors over four solar activity cycles. We clearly see the phase of the free-space diurnal anisotropy shifting toward earlier hours around solar activity minima in A > 0 epochs, due to the reduced anisotropy component parallel to the mean magnetic field. This component is consistent with a rigidity-independent spectrum, while the perpendicular anisotropy component increases with GCR rigidity. We suggest that this harder spectrum of the perpendicular component is due to contribution from the drift streaming. We find that the bi-directional latitudinal density gradient is positive in the A > 0 epoch, while it is negative in the A 0 and A 0. We also find, however, that the parallel mean free path (radial gradient) appears to persistently increase (decrease) in the last three cycles of weakening solar activity. We suggest that simple differences between these parameters in A > 0 and A < 0 epochs are seriously biased by these long-term trends.


Earth, Planets and Space | 2014

The spatial density gradient of galactic cosmic rays and its solar cycle variation observed with the Global Muon Detector Network

M. Kozai; K. Munakata; C. Kato; T. Kuwabara; John W. Bieber; Paul Evenson; M. Rockenbach; Alisson Dal Lago; Nelson Jorge Schuch; Munetoshi Tokumaru; M. L. Duldig; J. E. Humble; Ismail Sabbah; Hala K. Al Jassar; Madan M. Sharma; Jozsef Kota

We derive the long-term variation of the three-dimensional (3D) anisotropy of approximately 60 GV galactic cosmic rays (GCRs) from the data observed with the Global Muon Detector Network (GMDN) on an hourly basis and compare it with the variation deduced from a conventional analysis of the data recorded by a single muon detector at Nagoya in Japan. The conventional analysis uses a north-south (NS) component responsive to slightly higher rigidity (approximately 80 GV) GCRs and an ecliptic component responsive to the same rigidity as the GMDN. In contrast, the GMDN provides all components at the same rigidity simultaneously. It is confirmed that the temporal variations of the 3D anisotropy vectors including the NS component derived from two analyses are fairly consistent with each other as far as the yearly mean value is concerned. We particularly compare the NS anisotropies deduced from two analyses statistically by analyzing the distributions of the NS anisotropy on hourly and daily bases. It is found that the hourly mean NS anisotropy observed by Nagoya shows a larger spread than the daily mean due to the local time-dependent contribution from the ecliptic anisotropy. The NS anisotropy derived from the GMDN, on the other hand, shows similar distribution on both the daily and hourly bases, indicating that the NS anisotropy is successfully observed by the GMDN, free from the contribution of the ecliptic anisotropy. By analyzing the NS anisotropy deduced from neutron monitor (NM) data responding to lower rigidity (approximately 17 GV) GCRs, we qualitatively confirm the rigidity dependence of the NS anisotropy in which the GMDN has an intermediate rigidity response between NMs and Nagoya. From the 3D anisotropy vector (corrected for the solar wind convection and the Compton-Getting effect arising from the Earth’s orbital motion around the Sun), we deduce the variation of each modulation parameter, i.e., the radial and latitudinal density gradients and the parallel mean free path for the pitch angle scattering of GCRs in the turbulent interplanetary magnetic field. We show the derived density gradient and mean free path varying with the solar activity and magnetic cycles.


The Astrophysical Journal | 2017

Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array

M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren; G. M. Le

We report on the analysis of the 10−1000 TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from 1995 October to 2010 February. In this analysis, we improve the energy estimate and extend the decl. range down to −30◦. We find that the anisotropy maps above 100 TeV are distinct from that at a multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant, and a new component appears at ∼ 100 TeV. The spatial distribution of the GCR intensity with an excess (7.2σ pre-trial, 5.2σ post-trial) and a deficit (−5.8σ pre-trial) are observed in the 300 TeV anisotropy map, in close agreement with IceCube’s results at 400 TeV. Combining the Tibet results in the northern sky with IceCube’s results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above ∼ 100 TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.


Earth, Planets and Space | 2014

Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

Yoshinori Sasai; Yuya Nagai; Y. Itow; Y. Matsubara; T. Sako; Diego Lopez; Tsukasa Itow; K. Munakata; C. Kato; M. Kozai; T. Miyazaki; S. Shibata; A. Oshima; H. Kojima; H. Tsuchiya; Kyoko Watanabe; Tatsumi Koi; J.F. Valdés-Galicia; L.X. González; Ernesto Ortiz; O. Musalem; A. Hurtado; Rocío García; Marcos Anzorena

We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.


arXiv: Instrumentation and Methods for Astrophysics | 2017

The GAPS experiment to search for dark matter using low-energy antimatter

R. A. Ong; T. Aramaki; R. Bird; Mirko Boezio; S. E. Boggs; R. Carr; William W. Craig; Philip von Doetinchem; Lorenzo Fabris; F. Gahbauer; Cory Gerrity; H. Fuke; Charles J. Hailey; C. Kato; A. Kawachi; M. Kozai; S.I. Mognet; K. Munakata; Shun Okazaki; Giuseppe Osteria; K. Perez; V. Re; Field Rogers; Nate Saffold; Yuki Shimizu; Atsumasa Yoshida; T. Yoshida; G. Zampa; Jeff Zweerink

The GAPS experiment is designed to carry out a sensitive dark matter search by measuring low-energy cosmic ray antideuterons and antiprotons. GAPS will provide a new avenue to access a wide range of dark matter models and masses that is complementary to direct detection techniques, collider experiments and other indirect detection techniques. Well-motivated theories beyond the Standard Model contain viable dark matter candidates which could lead to a detectable signal of antideuterons resulting from the annihilation or decay of dark matter particles. The dark matter contribution to the antideuteron flux is believed to be especially large at low energies (E < 1 GeV), where the predicted flux from conventional astrophysical sources (i.e. from secondary interactions of cosmic rays) is very low. The GAPS low-energy antiproton search will provide stringent constraints on less than 10 GeV dark matter, will provide the best limits on primordial black hole evaporation on Galactic length scales, and will explore new discovery space in cosmic ray physics. Unlike other antimatter search experiments such as BESS and AMS that use magnetic spectrometers, GAPS detects antideuterons and antiprotons using an exotic atom technique. This technique, and its unique event topology, will give GAPS a nearly background-free detection capability that is critical in a rare-event search. GAPS is designed to carry out its science program using long-duration balloon flights in Antarctica. A prototype instrument was successfully flown from Taiki, Japan in 2012. GAPS has now been approved by NASA to proceed towards the full science instrument, with the possibility of a first long-duration balloon flight in late 2020. Here we motivate low-energy cosmic ray antimatter searches and discuss the current status of the GAPS experiment and the design of the payload.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Measurement of high energy cosmic rays by the new Tibet hybrid experiment

J. Huang; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu Na; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren na; G. M. Le

We have started a new hybrid air shower experiment at Yangbajing (4300 m a.s.l.) in Tibet in February 2014. This new hybrid experiment consists of the YAC-II comprised of 124 core detectors placed in the form of a square grid of 1.9 m spacing covering about 500 m2, the Tibet-III air shower array with the total area of about 50,000 m2 and the underground MD array consisting of 80 cells, with the total area of about 4,200 m2. This hybrid-array system is used to observe air showers of high energy celestial gamma-ray origin and those of nuclear-component origin. In this paper, a short review of the experiment will be followed by an overview on the current results on energy spectrum and chemical composition of CRs and test of hadronic interaction models.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Interplanetary Coronal Mass Ejection and the Sun's Shadow Observed by the Tibet Air Shower Array

K. Kawata; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; M. Kozai; Labaciren na; G. M. Le

We continuously observed the Sun’s shadow in 3 TeV cosmic-ray intensity with the Tibet-III air shower array since 2000. We find a clear solar-cycle variation of the deficit intensity in the Sun’s shadow during the periods between 2000 and 2009. The MC simulation of the Sun’s shadow based on the coronal magnetic field model does not well reproduce the observed deficit intensity around the solar maximum. However, when we exclude the transit periods during ICMEs towards to the Earth, the MC simulation shows better reproducibility. In the present paper, we report on the MC simulation and the analysis method of the Sun’s shadow observed by the Tibet-III array.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

The Tibet AS+MD Project; status report 2017

Masato Takita; M. Amenomori; X. J. Bi; D. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; G. M. Le; Ang Li

We built a large (approximately 4,000 m**2) water Cherenkov- type muon detector array under the existing Tibet air shower array at 4,300 m above sea level, to observe 10-1000 TeV gamma rays from cosmic-ray accelerators in our Galaxy with wide field of view at very low background level. A gamma-ray induced air shower has significantly less muons compared with a cosmic-ray induced one. Therefore, we can effectively discriminate between primary gamma rays and cosmic-ray background events by means of counting number of muons in an air shower event by the muon detector array. We make a status report on the experiment.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Solar magnetic field strength and the “Sun's Shadow”

Yoshiaki Nakamura; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren na

The angular displacement of the center of the observed Suns shadow from the center of the optical solar disc tells us the information of average solar magnetic field strength in the space between the Sun and the Earth. We analyze the displacement of the Suns shadow observed in 5 ~ 240 TeV cosmic-ray intensity with the Tibet-III air shower array during 10 years between 2000 and 2009, and compare with the MC simulations based on the coronal magnetic field model and Parkers spiral interplanetary magnetic field model. We find that the observed North-South displacement is significantly larger than the prediction of simulations. This result uniquely suggests the underestimation of the average field strength between the Sun and the Earth in our model. In this work, we will report the actual solar magnetic field strength evaluated from the observed Suns shadow.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Development of faster front end electronics for the SciCRT detector at Sierra Negra, Mexico

Marcos Alfonso Anzorena Méndez; J.F. Valdés-Galicia; Rocío García Gínez; Y. Matsubara; Yoshinori Sasai; Tetsuya Kawabata; Ernesto Ortiz; L.X. González; O. Musalem; A. Hurtado; Marco Barrantes; Roberto Taylor; Y. Itow; Takashi Sako; Akira Tsuchiya; K. Munakata; Chihiro Kato; Y. Nakamura; Takahiro Oshima; Toshiki Koike; S. Shibata; A. Oshima; Hisanori Takamaru; Hiroshi Kojima; H. Tsuchiya; Kyoko Watanabe; M. Kozai; Tatsumi Koi

The SciBar Cosmic ray telescope (SciCRT) is installed on the top of the Sierra Negra volcano with the main goal of observing solar neutrons to investigate the ion acceleration process during solar flares. Using scintillator bars as a medium to stop energetic particles, the SciCRT is capable of recording both energy deposited on the bars and direction of the incoming particles with high resolution. The original DAQ system was used in neutrino oscillation experiment (low event rate), therefore operation of the electronics on cosmic ray experiment is limited. To improve the SciCRT performance as a solar neutron telescope, development of custom made DAQ electronics is essential. Our first step onto this task was the design and construction of a new fast readout back-end board using SiTCP. The installation of this new system on Sierra Negra and its further improvement on the data acquisition for the detector will be analyzed on separate paper on this conference. The development of new front end electronics is the next stage of the upgrading process. To achieve this goal, we are developing new electronics applying the time over threshold (ToT) technique, using a FPGA to process the signal from one 64 channel multi anode photomutiplier tube (MAPMT). In this paper we will present the details of this new system and several tests performed to guarantee its proper operation to detect solar neutrons.

Collaboration


Dive into the M. Kozai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Katayose

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. W. Cui

Hebei Normal University

View shared research outputs
Top Co-Authors

Avatar

Z. Y. Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge