Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M Martijn Kemerink is active.

Publication


Featured researches published by M Martijn Kemerink.


Nature | 2008

Bottom-up organic integrated circuits

Edsger C. P. Smits; Simon G. J. Mathijssen; Paul A. van Hal; Sepas Setayesh; Thomas C. T. Geuns; Kees A. H. Mutsaers; Eugenio Cantatore; Harry J. Wondergem; Oliver Werzer; Roland Resel; M Martijn Kemerink; Stephan Kirchmeyer; A. M. Muzafarov; Sergei A. Ponomarenko; Bert de Boer; Paul W. M. Blom; Dago M. de Leeuw

Self-assembly—the autonomous organization of components into patterns and structures—is a promising technology for the mass production of organic electronics. Making integrated circuits using a bottom-up approach involving self-assembling molecules was proposed in the 1970s. The basic building block of such an integrated circuit is the self-assembled-monolayer field-effect transistor (SAMFET), where the semiconductor is a monolayer spontaneously formed on the gate dielectric. In the SAMFETs fabricated so far, current modulation has only been observed in submicrometre channels, the lack of efficient charge transport in longer channels being due to defects and the limited intermolecular π–π coupling between the molecules in the self-assembled monolayers. Low field-effect carrier mobility, low yield and poor reproducibility have prohibited the realization of bottom-up integrated circuits. Here we demonstrate SAMFETs with long-range intermolecular π–π coupling in the monolayer. We achieve dense packing by using liquid-crystalline molecules consisting of a π-conjugated mesogenic core separated by a long aliphatic chain from a monofunctionalized anchor group. The resulting SAMFETs exhibit a bulk-like carrier mobility, large current modulation and high reproducibility. As a first step towards functional circuits, we combine the SAMFETs into logic gates as inverters; the small parameter spread then allows us to combine the inverters into ring oscillators. We demonstrate real logic functionality by constructing a 15-bit code generator in which hundreds of SAMFETs are addressed simultaneously. Bridging the gap between discrete monolayer transistors and functional self-assembled integrated circuits puts bottom-up electronics in a new perspective.


Journal of Physical Chemistry Letters | 2015

Modeling Anomalous Hysteresis in Perovskite Solar Cells

Stephan van Reenen; M Martijn Kemerink; Henry J. Snaith

Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.


Nature Materials | 2009

The dynamic organic p-n junction

Piotr Matyba; K Klara Maturová; M Martijn Kemerink; Nathaniel D. Robinson; Ludvig Edman

Static p-n junctions in inorganic semiconductors are exploited in a wide range of todays electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.


Journal of the American Chemical Society | 2010

A Unifying Model for the Operation of Light-Emitting Electrochemical Cells

Stephan van Reenen; Piotr Matyba; Andrzej Dzwilewski; René A. J. Janssen; Ludvig Edman; M Martijn Kemerink

The application of doping in semiconductors plays a major role in the high performances achieved to date in inorganic devices. In contrast, doping has yet to make such an impact in organic electronics. One organic device that does make extensive use of doping is the light-emitting electrochemical cell (LEC), where the presence of mobile ions enables dynamic doping, which enhances carrier injection and facilitates relatively large current densities. The mechanism and effects of doping in LECs are, however, still far from being fully understood, as evidenced by the existence of two competing models that seem physically distinct: the electrochemical doping model and the electrodynamic model. Both models are supported by experimental data and numerical modeling. Here, we show that these models are essentially limits of one master model, separated by different rates of carrier injection. For ohmic nonlimited injection, a dynamic p-n junction is formed, which is absent in injection-limited devices. This unification is demonstrated by both numerical calculations and measured surface potentials as well as light emission and doping profiles in operational devices. An analytical analysis yields an upper limit for the ratio of drift and diffusion currents, having major consequences on the maximum current density through this type of device.


Advanced Materials | 2011

Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells

L. Jan Anton Koster; M Martijn Kemerink; Mm Martijn Wienk; K Klara Maturová; René A. J. Janssen

We present a new experimental technique that affords direct quantification of the fraction of charge carriers lost in poly(3-hexylthiophene): fullerene solar cells by bimolecular recombination. Depending on annealing conditions up to 17% of carriers recombine bimolecularly under solar illumination. We explain our findings with a closed analytical expression for the photocurrent generated by an organic solar cell.


Nano Letters | 2009

Morphological Device Model for Organic Bulk Heterojunction Solar Cells

K Klara Maturová; van Ss Svetlana Bavel; Mm Martijn Wienk; Raj René Janssen; M Martijn Kemerink

We present a numerical model for calculating current-voltage characteristics of polymer:fullerene bulk hetrojunction solar cells at different degrees of nanoscale phase separation. We show that the short-circuit current enhancement with finer phase separation is due to a reduction in bimolecular recombination caused by lateral movement of photogenerated electrons to the fullerene-rich phase. At high bias, vertical electron transport is enhanced and lateral movement is reduced, causing a significant field-dependent carrier extraction for coarse morphologies.


Nature Nanotechnology | 2009

Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors

Simon G. J. Mathijssen; Edsger C. P. Smits; Paul A. van Hal; Harry J. Wondergem; Sergei A. Ponomarenko; Armin Moser; Roland Resel; Pa Peter Bobbert; M Martijn Kemerink; René A. J. Janssen; Dago M. de Leeuw

The mobility of self-assembled monolayer field-effect transistors (SAMFETs) traditionally decreases dramatically with increasing channel length. Recently, however, SAMFETs using liquid-crystalline molecules have been shown to have bulk-like mobilities that are virtually independent of channel length. Here, we reconcile these scaling relations by showing that the mobility in liquid crystalline SAMFETs depends exponentially on the channel length only when the monolayer is incomplete. We explain this dependence both numerically and analytically, and show that charge transport is not affected by carrier injection, grain boundaries or conducting island size. At partial coverage, that is when the monolayer is incomplete, liquid-crystalline SAMFETs thus form a unique model system to study size-dependent conductance originating from charge percolation in two dimensions.


ACS Nano | 2008

Real versus measured surface potentials in scanning Kelvin probe microscopy.

Dsh Dimitri Charrier; M Martijn Kemerink; E Barry Smalbrugge; Tjibbe de Vries; Raj René Janssen

Noncontact potentiometry or scanning Kelvin probe microscopy (SKPM) is a widely used technique to study charge injection and transport in (in)organic devices by measuring a laterally resolved local potential. This technique suffers from the significant drawback that experimentally obtained curves do not generally reflect the true potential profile in the device due to nonlocal coupling between the probing tip and the device. In this work, we quantitatively explain the experimental SKPM response and by doing so directly link theoretical device models to real observables. In particular, the model quantitatively explains the effects of the tip-sample distance and the dependence on the orientation of the probing tip with respect to the device.


Advanced Materials | 2010

Revealing Buried Interfaces to Understand the Origins of Threshold Voltage Shifts in Organic Field‐Effect Transistors

Simon G. J. Mathijssen; Mark-Jan Spijkman; Anne-Marije Andringa; Paul A. van Hal; Iain McCulloch; M Martijn Kemerink; René A. J. Janssen; Dago M. de Leeuw

The semiconductor of an organic field-effect transistor is stripped with adhesive tape, yielding an exposed gate dielectric, accessible for various characterization techniques. By using scanning Kelvin probe microscopy we reveal that trapped charges after gate bias stress are located at the gate dielectric and not in the semiconductor. Charging of the gate dielectric is confirmed by the fact that the threshold voltage shift remains, when a pristine organic semiconductor is deposited on the exposed gate dielectric of a stressed and delaminated field-effect transistor.


Journal of the American Chemical Society | 2010

Remnant polarization in thin films from a columnar liquid crystal

Cfc Carel Fitié; Wsc Christian Roelofs; M Martijn Kemerink; Rint P. Sijbesma

Ferroelectric switching is demonstrated in a hydrogen bonded columnar liquid crystalline (LC) material. Polar order induced in the LC phase can be frozen by crystallization of the alkyl chains in the periphery of the columns yielding thin films with remnant polarization and an unprecedented high surface potential as shown by scanning Kelvin probe microscopy.

Collaboration


Dive into the M Martijn Kemerink's collaboration.

Top Co-Authors

Avatar

Raj René Janssen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pm Paul Koenraad

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jh Joachim Wolter

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

René A. J. Janssen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pa Peter Bobbert

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephan van Reenen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B Bert Koopmans

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge