Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Nishiura is active.

Publication


Featured researches published by M. Nishiura.


Physics of Plasmas | 2012

Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation

T. Saito; Naoki Yamada; Shinji Ikeuti; S. Ogasawara; Y. Tatematsu; Ryosuke Ikeda; I. Ogawa; T. Idehara; V. N. Manuilov; T. Shimozuma; Shin Kubo; M. Nishiura; Kenji Tanaka; K. Kawahata

New power records of second harmonic gyrotron oscillation have been demonstrated in the sub-THz band. The first step gyrotron of demountable type had succeeded in oscillation with power more than 50 kW at 350 GHz and nearly 40 kW at 390 GHz [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009)]. Then, the second step gyrotron of sealed-off type was manufactured. A cavity mode was carefully selected to avoid mode competition with a neighboring fundamental harmonic mode. Matching of the selected mode with the electron gun was also circumspectly considered. The second step gyrotron has attained higher power radiation than the first gyrotron. The maximum single mode power was 62 kW at 388 GHz. Then, the electron gun was modified for use of a different cavity mode with a higher coupling coefficient than that for the 62 kW mode. The new mode proved single mode oscillation power of 83 kW at about 389 GHz. These results are new second-harmonic-oscillation power records for sub-THz gyrotrons. The present study constitutes foundations of development of high power second harmonic sub-THz gyrotron for application to collective Thomson scattering measurement on fusion plasmas, especially on high-density plasmas such as those produced in LHD [N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006)]. This paper reports the design consideration to realize high power single mode gyrotron oscillation at second harmonic and the examination of oscillation characteristics of the gyrotron.


Nuclear Fusion | 2005

Overview of confinement and MHD stability in the Large Helical Device

O. Motojima; K. Ida; K.Y. Watanabe; Y. Nagayama; A. Komori; T. Morisaki; B.J. Peterson; Y. Takeiri; K. Ohkubo; K. Tanaka; T. Shimozuma; S. Inagaki; T. Kobuchi; S. Sakakibara; J. Miyazawa; H. Yamada; N. Ohyabu; K. Narihara; K. Nishimura; M. Yoshinuma; S. Morita; T. Akiyama; N. Ashikawa; C. D. Beidler; M. Emoto; T. Fujita; Takeshi Fukuda; H. Funaba; P. Goncharov; M. Goto

The Large Helical Device is a heliotron device with L = 2 and M = 10 continuous helical coils with a major radius of 3.5–4.1 m, a minor radius of 0.6 m and a toroidal field of 0.5–3 T, which is a candidate among toroidal magnetic confinement systems for a steady state thermonuclear fusion reactor. There has been significant progress in extending the plasma operational regime in various plasma parameters by neutral beam injection with a power of 13 MW and electron cyclotron heating (ECH) with a power of 2 MW. The electron and ion temperatures have reached up to 10 keV in the collisionless regime, and the maximum electron density, the volume averaged beta value and stored energy are 2.4 × 1020 m−3, 4.1% and 1.3 MJ, respectively. In the last two years, intensive studies of the magnetohydrodynamics stability providing access to the high beta regime and of healing of the magnetic island in comparison with the neoclassical tearing mode in tokamaks have been conducted. Local island divertor experiments have also been performed to control the edge plasma aimed at confinement improvement. As for transport study, transient transport analysis was executed for a plasma with an internal transport barrier and a magnetic island. The high ion temperature plasma was obtained by adding impurities to the plasma to keep the power deposition to the ions reasonably high even at a very low density. By injecting 72 kW of ECH power, the plasma was sustained for 756 s without serious problems of impurities or recycling.


Nuclear Fusion | 2007

Steady-state operation and high energy particle production of MeV energy in the Large Helical Device

T. Mutoh; R. Kumazawa; T. Seki; K. Saito; H. Kasahara; Y. Nakamura; S. Masuzaki; S. Kubo; Y. Takeiri; T. Shimozuma; Y. Yoshimura; H. Igami; T. Watanabe; H. Ogawa; J. Miyazawa; M. Shoji; N. Ashikawa; K. Nishimura; M. Osakabe; K. Tsumori; K. Ikeda; K. Nagaoka; Y. Oka; H. Chikaraishi; H. Funaba; S. Morita; M. Goto; S. Inagaki; K. Narihara; T. Tokuzawa

Achieving steady-state plasma operation at high plasma temperatures is one of the important goals of worldwide magnetic fusion research. High temperatures of approximately 1?2?keV, and steady-state plasma sustainment operations have been reported. Recently the steady-state operation regime was greatly extended in the Large Helical Device (LHD). A high-temperature plasma was created and maintained for 54?min with 1.6?GJ in the 2005FY experimental programme. The three-dimensional heat-deposition profile of the LHD helical divertor was modified, and during long-pulse discharges it effectively dispersed the heat load using a magnetic axis swing technique developed at the LHD. A sweep of only 3?cm in the major radius of the magnetic axis position (less than 1% of the major radius of the LHD) was enough to disperse the divertor heat load. The steady-state plasma was heated and sustained mainly by hydrogen minority ion heating using ion cyclotron range of frequencies and partially by electron cyclotron of fundamental resonance frequency. By accumulating the small flux of charge-exchanged neutral particles during the long-pulse operation, a high energy ion tail which extended up to 1.6?MeV was observed. This is the first experimental evidence of high energetic ion confinement of MeV range in helical devices. The long-pulse operations lasted until a sudden increase in radiation loss occurred, presumably because of metal wall flakes dropping into the plasma. The sustained line-averaged electron density and temperature were approximately 0.8 ? 1019?m?3 and 2?keV, respectively, at a 1.3?GJ discharge (#53776) and 0.4 ? 1019?m?3 and 1?keV at a 1.6?GJ discharge (#66053). The average input power was 680?kW and 490?kW, and the plasma duration was 32?min and 54?min, respectively. These successful long operations show that the heliotron configuration has a high potential as a steady-state fusion reactor.


Review of Scientific Instruments | 2006

6 MeV heavy ion beam probe on the Large Helical Device

T. Ido; A. Shimizu; M. Nishiura; A. Nishizawa; S. Katoh; K. Tsukada; Mitsuhiro Yokota; Hideki Ogawa; T. Inoue; Y. Hamada; T. P. Crowley

A heavy ion beam probe (HIBP) has been installed on the Large Helical Device (LHD). A MeV-range beam is required for the LHD-HIBP. The probing beam is accelerated up to 6 MeV by use of a tandem accelerator. A new energy analyzer with tandem electrodes has also been developed to analyze such a high energy beam. As a result, a secondary beam can be detected and its energy successfully analyzed. It is verified, in principle, that the potential profile can be measured using the HIBP.


Review of Scientific Instruments | 2010

Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited)

S. Kubo; M. Nishiura; K. Tanaka; T. Shimozuma; Y. Yoshimura; H. Igami; H. Takahash; T. Mutoh; N. Tamura; Y. Tatematsu; T. Saito; T. Notake; Søren Bang Korsholm; F. Meo; S. K. Nielsen; M. Salewski; M. Stejner

Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.


Plasma Physics and Controlled Fusion | 2005

Extension and characteristics of an ECRH plasma in LHD

S. Kubo; T. Shimozuma; Y. Yoshimura; T. Notake; H. Idei; S. Inagaki; M. Yokoyama; K. Ohkubo; R. Kumazawa; Y. Nakamura; K. Saito; T. Seki; T. Mutoh; T. Watari; K. Narihara; I. Yamada; K. Ida; Y. Takeiri; H. Funaba; N. Ohyabu; K. Kawahata; O. Kaneko; H. Yamada; K. Itoh; N. Ashikawa; M. Emoto; M. Goto; Y. Hamada; T. Ido; K. Ikeda

One of the main objectives of LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in the steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with special emphasis on the local heating properties. As a result, a central electron temperature of more than 10?keV with an electron density of 0.6 ? 1019?m?3 is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. The 168?GHz ECRH system demonstrated efficient heating at densities more than 1.0 ? 1020?m?3. The continuous wave ECRH system is successfully operated to sustain a 756?s discharge.


Review of Scientific Instruments | 2004

Scintillator probe diagnostic for high energy particles escaped from Large Helical Device

M. Nishiura; M. Isobe; T. Saida; M. Sasao; D. S. Darrow

A scintillator probe for escaping fast ion diagnostics has been developed in the Large Helical Device. This probe is capable of traveling across a divertor leg and sweeping the aperture angle rotationally with respect to the axis of the probe shaft. Pitch angle and gyro radius resolutions are estimated numerically by using a Monte Carlo orbit simulation. The result shows that the detector has sufficient resolution in pitch angle and gyro radius for our target plasmas. Under the neutral beam injected plasma, a signal derived from fast ions was obtained on the scintillator plate and analyzed by using the recorded camera image.


Nuclear Fusion | 2006

Studies of fast-ion transport induced by energetic particle modes using fast-particle diagnostics with high time resolution in CHS

M. Isobe; K. Toi; H. Matsushita; K. Goto; C. Suzuki; K. Nagaoka; N. Nakajima; S. Yamamoto; S. Murakami; A. Shimizu; Y. Yoshimura; T. Akiyama; T. Minami; M. Nishiura; S. Nishimura; D. S. Darrow; Donald A. Spong; K. Shinohara; M. Sasao; K. Matsuoka; S. Okamura

The purpose of this work is to reveal the effects of the energetic particle mode (EPM) on fast-ion transport and consequent fast-ion loss in the compact helical system (CHS). For this purpose, fast particle diagnostics capable of following fast events originating from the EPM (f < 100 kHz) and from the toroidicity-induced Alfven eigenmode (TAE) (f = 100–200 kHz) are employed in CHS. Experiments show that the EPM excited by co-circulating fast ions in an outward-shifted configuration is identified as a mode of m/n = 3/2 and can enhance fast-ion loss when its magnetic fluctuation amplitude exceeds ~4 × 10−5 T at the magnetic probe position. The lost fast-ion probe (LIP) located at the outboard side of the torus indicates that bursting EPMs lead to periodically enhanced losses of co-going fast ions having smaller pitch angles in addition to losses of marginally co-passing fast ions. Coinciding with EPM bursts, the Hα light detector viewing the peripheral region at the outboard side also shows large pulsed increases similar to that of the LIP whereas the detector viewing the peripheral region at the inboard side does not. This is also evidence that fast ions are expelled to the outboard side due to the EPM. The charge-exchange neutral particle analyser indicates that only fast ions whose energy is close to the beam injection energy Eb are strongly affected by EPM, suggesting in turn that observed EPMs are excited by fast ions having energy close to Eb.


Review of Scientific Instruments | 2004

Contribution of wall material to the vibrational excitation and negative ion formation in hydrogen negative ion sources (invited)

M. Bacal; A. A. Ivanov; M. Glass‐Maujean; Y. Matsumoto; M. Nishiura; M. Sasao; M. Wada

The wall production contribution to the negative hydrogen ion formation in multicusp ion sources has been investigated using the photodetachment diagnostic (for determining the negative ion density and temperature), negative ion and electron extraction, and vacuum ultraviolet (VUV) emission spectroscopy. The wall material was modified either by depositing thin films from filaments made of different material or by depositing fresh material of the same filament. Thus we show that a fresh tantalum film leads to enhanced negative ion density and enhanced temperature of the hot negative ion population. The slow poisoning effect due to argon additive also indicates the presence of the wall contribution to H− formation. The study of the VUV spectra with different wall materials indicates the presence of vibrationally excited states of H2.


Physical Review Letters | 2016

Strong Destabilization of Stable Modes with a Half-Frequency Associated with Chirping Geodesic Acoustic Modes in the Large Helical Device

T. Ido; K. Itoh; M. Osakabe; M. Lesur; A. Shimizu; K. Ogawa; K. Toi; M. Nishiura; Kato S; Makoto Sasaki; K. Ida; Shigeru Inagaki; S.-I. Itoh

Abrupt and strong excitation of a mode has been observed when the frequency of a chirping energetic-particle driven geodesic acoustic mode (EGAM) reaches twice the geodesic acoustic mode (GAM) frequency. The frequency of the secondary mode is the GAM frequency, which is a half-frequency of the primary EGAM. Based on the analysis of spatial structures, the secondary mode is identified as a GAM. The phase relation between the secondary mode and the primary EGAM is locked, and the evolution of the growth rate of the secondary mode indicates nonlinear excitation. The results suggest that the primary mode (EGAM) contributes to nonlinear destabilization of a subcritical mode.

Collaboration


Dive into the M. Nishiura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Yoshimura

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Mutoh

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

H. Takahashi

Graduate University for Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge