Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Nishizawa is active.

Publication


Featured researches published by M. Nishizawa.


The Astrophysical Journal | 2005

A Northern Sky Survey for Steady Tera-Electron Volt Gamma-Ray Point Sources Using the Tibet Air Shower Array

M. Amenomori; S. Ayabe; D. Chen; Shuwang Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; M. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le; J. Y. Li; H. Lu

Results of a steady TeV γ-ray point-source search using data taken from the Tibet HD (1997 February-1999 September) and Tibet III (1999 November-2001 October) arrays are presented. From 0° to 60° in declination, significant excesses from the well-known steady source Crab Nebula and the high state of the flare-type source Markarian 421 are observed. Because the levels of significance from other positions are not sufficiently high, 90% confidence level upper limits on the flux are set assuming different power-law spectra. To allow cross-checking, two independently developed analyses are used in this work.


The Astrophysical Journal | 2003

Multi-TeV Gamma-Ray Flares from Markarian 421 in 2000 and 2001 Observed with the Tibet Air Shower Array

Michihiro Amenomori; S. Ayabe; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. F. Feng; Z. Y. Feng; X. Y. Gao; Q. X. Geng; H. W. Guo; H. H. He; Mao He; K. Hibino; Norifumi Hotta; Haibing Hu; H. B. Hu; J. Huang; Q. Huang; H. Y. Jia; F. Kajino; Kazuo Kasahara; Y. Katayose; K. Kawata; Labaciren; G. M. Le; J. Y. Li; H. Lu; S. L. Lu; X. R. Meng

Several strong TeV γ-ray flares were detected from Mrk 421 in the years 2000 and 2001 by the Tibet III air shower array at a level of statistical significance of 5.1 σ. Mrk 421 was unprecedentedly active at X-ray and TeV γ-ray energies during this period, and a positive correlation was found between the change of the all-sky monitor Rossi X-Ray Timing Explorer X-ray flux and the Tibet TeV γ-ray flux. When a power-law energy spectrum for γ-rays from this source is assumed, the spectral index is calculated to be -3.24 ± 0.69 at the most active phase in 2001. The spectral index observed by the Tibet air shower array is consistent with those obtained via imaging air Cerenkov telescopes.


The Astrophysical Journal | 1999

Observation of multi-TeV gamma rays from the Crab Nebula using the Tibet air shower array

Michihiro Amenomori; S. Ayabe; P.-Y. Cao; Danzengluobu; L.K Ding; Z. Y. Feng; Yan Fu; H. W. Guo; Mao He; K. Hibino; Norifumi Hotta; Q. Huang; Anxiang Huo; K. Izu; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; Labaciren; J. Y. Li; H. Lu; Shih-lien Lu; G. X. Luo; X. R. Meng; K. Mizutani; J. Mu; H. Nanjo; M. Nishizawa; M. Ohnishi; I. Ohta

The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.


HIGH ENERGY GAMMA-RAY ASTRONOMY: International Symposium | 2001

Performance of the Tibet II/HD air shower array

M. Amenomori; S. Ayabe; Caidong; Danzengluobu; L. K. Ding; Z. Y. Feng; Yan Fu; H. W. Guo; Mao He; K. Hibino; N. Hotta; J. Huang; Q. Huang; Anxiang Huo; K. Izu; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; K. Kawata; Labaciren; J. Y. Li; H. Lu; S. L. Lu; G. X. Luo; X. R. Meng; K. Mizutani; J. Mu; H. Nanjo; M. Nishizawa

Tibet II Air Shower Array consisting of scintillation counters with lattice of 15 m spacing has been operated with very high trigger rate of about 200 Hz. The threshold enegy of this array is estimated to be about 8 TeV for proton induced showers. Tibet High Density (HD) Array with 7.5 m spacing has been operated with the trigger rate of 115 Hz. The Mode energy of this array is estimated to be about 3 TeV for proton showers. Angular resolution of the arrays are estimated to be 0.9 degree above 10 TeV for Tibet II array, and 0.85 degree above TeV for HD array, resepectively. The angular resolution of these arrays and other array performances are examined by observing the Moon shadow resulting from the cosmic ray deficit in the direction of the Moon. Using the deflection of the Moon shadow to the east-west direction, the error of the array can be estimated by observing the displacement of the shadow in the north-south direction, because it is free from the effect of geomagnetic field, especially at Yangbaji...


Advances in Space Research | 1999

Sun's shadow by 10 TeV cosmic rays under the influence of solar activity

M. Amenomori; S. Ayabe; P.-Y. Cao; Ben Zhong Dai; L.K Ding; Z. Y. Feng; Yan Fu; H. W. Guo; Mao He; K. Hibino; N. Hotta; Q. Huang; Anxiang Huo; I Izu; H. Y. Jia; F. Kajino; K. Kasahara; Y. Katayose; Labaciren; J. Y. Li; S. M. J. Liu; H. Lu; Shih-lien Lu; G. X. Luo; Dongming Mei; X. R. Meng; K. Mizutani; J. Mu; H. Nanjo; M. Nishizawa

Abstract We examined the Suns shadow by 10 TeV cosmic rays observed with the Tibet air shower array during the period from 1991 through 1997. The results suggest that there is a causal relation between the shadows movement and the changing inclination of the heliospheric current sheet of the large-scale solar magnetic field. Thus, further observations with higher statistics may provide direct information on the relation between a time variation of the large-scale structure of the solar and interplanetary magnetic fields and the phase of solar activity cycle.


Nuclear Physics B (Proceedings Supplements) | 1989

A new project to search for high energy gamma ray point souces in Tibet

K. Hibino; F. Kajino; M. Nishizawa; M. Ohnishi; To Saito; Masako Shima; M. Sakata; Y. Yamamoto; M. Amenomori; H. Nanjo; T. Shirai; N. Tateyama; S. Torii; H. Sugimoto; Keisuke Taira; K. Kasahara; T. Yuda; K. Mizutani; N. Hotta; I. Ohta; M. Shibata; J.R Ren; H. Y. Dai; H. H. Kuang; A. X. Huo; S. L. Lu; S. Su; Y. H. Tan; Y. X. Wang; C. R. Wang

Abstract A new experiment to observe gamma rays around 100 TeV at Yanbajing (4300 m) in Tibet, China is planned by a collaboration between China and Japan. To study the feasibility of this experiment a test array was built at Mt. Norikura in Japan. Preliminary results from a search for gamma rays from Cyg X-3 and Her X-1 observed by this air shower array showed the upper limit fluxes of 5.6 × 10 −13 cm −2 s −1 and 3.0 × 10 −13 cm −2 s −1 with a 95% confidence level above TeV, respectively. At the first step experiment we will set up 65 scintillation counters in Tibet. An angular resolution of the apparatus will be better than 1° at an energy of 100 TeV. The detectors are monitored by a nitrogen laser system automatically which guarantees a long term quality of the data.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Measurement of high energy cosmic rays by the new Tibet hybrid experiment

J. Huang; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu Na; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren na; G. M. Le

We have started a new hybrid air shower experiment at Yangbajing (4300 m a.s.l.) in Tibet in February 2014. This new hybrid experiment consists of the YAC-II comprised of 124 core detectors placed in the form of a square grid of 1.9 m spacing covering about 500 m2, the Tibet-III air shower array with the total area of about 50,000 m2 and the underground MD array consisting of 80 cells, with the total area of about 4,200 m2. This hybrid-array system is used to observe air showers of high energy celestial gamma-ray origin and those of nuclear-component origin. In this paper, a short review of the experiment will be followed by an overview on the current results on energy spectrum and chemical composition of CRs and test of hadronic interaction models.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Interplanetary Coronal Mass Ejection and the Sun's Shadow Observed by the Tibet Air Shower Array

K. Kawata; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; M. Kozai; Labaciren na; G. M. Le

We continuously observed the Sun’s shadow in 3 TeV cosmic-ray intensity with the Tibet-III air shower array since 2000. We find a clear solar-cycle variation of the deficit intensity in the Sun’s shadow during the periods between 2000 and 2009. The MC simulation of the Sun’s shadow based on the coronal magnetic field model does not well reproduce the observed deficit intensity around the solar maximum. However, when we exclude the transit periods during ICMEs towards to the Earth, the MC simulation shows better reproducibility. In the present paper, we report on the MC simulation and the analysis method of the Sun’s shadow observed by the Tibet-III array.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

The Tibet AS+MD Project; status report 2017

Masato Takita; M. Amenomori; X. J. Bi; D. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; G. M. Le; Ang Li

We built a large (approximately 4,000 m**2) water Cherenkov- type muon detector array under the existing Tibet air shower array at 4,300 m above sea level, to observe 10-1000 TeV gamma rays from cosmic-ray accelerators in our Galaxy with wide field of view at very low background level. A gamma-ray induced air shower has significantly less muons compared with a cosmic-ray induced one. Therefore, we can effectively discriminate between primary gamma rays and cosmic-ray background events by means of counting number of muons in an air shower event by the muon detector array. We make a status report on the experiment.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

ALPAQUITA Array in the ALPACA Project

K. Kawata; T. Asaba; K. Hibino; N. Hotta; M. Kataoka; Y. Katayose; C. Kato; Hiroshi Kojima; R. Mayta; P. Miranda; K. Munakata; Y. Nakamura; M. Nishizawa; S. Ogio; M. Ohnishi; A. Oshima; M. Raljevich; H. Rivera; T. Saito; T. K. Sako; T. Sasaki; S. Shibata; A. Shiomi; M. Subieta; M. Suzuki; N. Tajima; M. Takita; Y. Tameda; Kei Tanaka; R. Ticona

We are now proposing a new project which consists of a large air shower array (83,000 m^2) and a muon detector array (5,400 m^2) located at the altitude of 4,740 m near La Paz in Bolivia to observe 100 TeV gamma rays in the southern sky. The ALPAQUITA array is a prototype air shower array which will be constructed at the ALPACA site. This array consists of 45 scintillation counters of 1 m^2 in area each, and its effective area is approximately 8,000 m^2 (1/10 of ALPACA air shower array). In the present paper, we report on the current status and the performance of the ALPAQUITA array

Collaboration


Dive into the M. Nishizawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Y. Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Y. Jia

Southwest Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

L. K. Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Q. Huang

Southwest Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mizutani

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

K. Kasahara

Shibaura Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Y. Katayose

Yokohama National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge