M. P. Alonso
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. P. Alonso.
Journal of Clinical Microbiology | 2004
Miguel Blanco; Jesús E. Blanco; Azucena Mora; Ghizlane Dahbi; M. P. Alonso; Enrique A. González; María Isabel Bernárdez; Jorge Blanco
ABSTRACT A total of 514 Shiga toxin-producing Escherichia coli (STEC) isolates from diarrheic and healthy cattle in Spain were characterized in this study. PCR showed that 101 (20%) isolates carried stx1 genes, 278 (54%) possessed stx2 genes, and 135 (26%) possessed both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 326 (63%) and in 151 (29%) of the isolates, respectively. STEC isolates belonged to 66 O serogroups and 113 O:H serotypes (including 23 new serotypes). However, 67% were of one of these 15 serogroups (O2, O4, O8, O20, O22, O26, O77, O91, O105, O113, O116, O157, O171, O174, and OX177) and 52% of the isolates belonged to only 10 serotypes (O4:H4, O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and ONT:H19). Although the 514 STEC isolates belonged to 164 different seropathotypes (associations between serotypes and virulence genes), only 12 accounted for 43% of isolates. Seropathotype O157:H7 stx2eae-γ1 ehxA (46 isolates) was the most common, followed by O157:H7 stx1stx2eae-γ1 ehxA (34 isolates), O113:H21 stx2 (25 isolates), O22:H8 stx1stx2ehxA (15 isolates), O26:H11 stx1eae-β1 ehxA (14 isolates), and O77:H41 stx2ehxA (14 isolates). Forty-one (22 of serotype O26:H11) isolates had intiminβ 1, 82 O157:H7 isolates possessed intimin γ1, three O111:H- isolates had intimin type γ2, one O49:H- strain showed intimin type δ, 13 (six of serotype O103:H2) isolates had intimin type ε and eight (four of serotype O156:H-) isolates had intimin ζ. We have identified a new variant of the eae intimin gene designated ξ (xi) in two isolates of serotype O80:H-. The majority (85%) of bovine STEC isolates belonged to serotypes previously found for human STEC organisms and 54% to serotypes associated with STEC organisms isolated from patients with hemolytic uremic syndrome. Thus, this study confirms that cattle are a major reservoir of STEC strains pathogenic for humans.
Journal of Clinical Microbiology | 2004
Jesús E. Blanco; Miguel Blanco; M. P. Alonso; Azucena Mora; Ghizlane Dahbi; María Amparo Coira; Jorge Blanco
ABSTRACT We have analyzed the prevalence of Shiga toxin-producing Escherichia coli (STEC) in stool specimens of patients with diarrhea or other gastrointestinal alterations from the Xeral-Calde Hospital of Lugo City (Spain). STEC strains were detected in 126 (2.5%) of 5,054 cases investigated, with a progressive increase in the incidence from 0% in 1992 to 4.4% in 1999. STEC O157:H7 was isolated in 24 cases (0.5%), whereas non-O157 STEC strains were isolated from 87 patients (1.7%). STEC strains were (after Salmonella and Campylobacter strains) the third most frequently recovered enteropathogenic bacteria. A total of 126 human STEC isolates were characterized in this study. PCR showed that 43 (34%) isolates carried stx1 genes, 45 (36%) possessed stx2 genes and 38 (30%) carried both stx1 and stx2. A total of 88 (70%) isolates carried an ehxA enterohemolysin gene, and 70 (56%) isolates possessed an eae intimin gene (27 isolates with type γ1, 20 with type β1, 8 with type ζ, 5 with type γ2, and 3 with type ε). STEC isolates belonged to 41 O serogroups and 66 O:H serotypes, including 21 serotypes associated with hemolytic uremic syndrome and 30 new serotypes not previously reported among human STEC strains in other studies. Although the 126 STEC isolates belonged to 81 different seropathotypes (associations between serotypes and virulence genes), only four accounted for 31% of isolates. Seropathotype O157:H7 stx1stx2eae-γ1 ehxA was the most common (13 isolates) followed by O157:H7 stx2eae-γ1 ehxA (11 isolates), O26:H11 stx1eae-β1 ehxA (11 isolates), and O111:H- stx1stx2eae-γ2 ehxA (4 isolates). Our results suggest that STEC strains are a significant cause of human infections in Spain and confirm that in continental Europe, infections caused by STEC non-O157 strains are more common than those caused by O157:H7 isolates. The high prevalence of STEC strains (both O157:H7 and non-O157 strains) in human patients, and their association with serious complications, strongly supports the utilization of protocols for detection of all serotypes of STEC in Spanish clinical microbiology laboratories.
Journal of Clinical Microbiology | 2003
Miguel Blanco; J.E. Blanco; Azucena Mora; J. Rey; J.M. Alonso; M. Hermoso; J. Hermoso; M. P. Alonso; Ghizlane Dahbi; Enrique A. González; María Isabel Bernárdez; Jesús E. Blanco
ABSTRACT Fecal swabs obtained from 1,300 healthy lambs in 93 flocks in Spain in 1997 were examined for Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 strains were isolated from 5 (0.4%) animals in 4 flocks, and non-O157 STEC strains were isolated from 462 (36%) lambs in 63 flocks. A total of 384 ovine STEC strains were characterized in this study. PCR showed that 213 (55%) strains carried the stx1 gene, 10 (3%) possessed the stx2 gene, and 161 (42%) carried both the stx1 and the stx2 genes. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 106 (28%) and 23 (6%) of the STEC strains, respectively. The STEC strains belonged to 35 O serogroups and 64 O:H serotypes (including 18 new serotypes). However, 72% were of 1 of the following 12 serotypes: O5:H−, O6:H10, O91:H−, O117:H−, O128:H−, O128:H2, O136:H20, O146:H8, O146:H21, O156:H−, O166:H28, and ONT:H21 (where NT is nontypeable). Although the 384 STEC strains belonged to 95 different seropathotypes (associations between serotypes and virulence genes), 49% of strains belonged to only 11. O91:H− stx1stx2 (54 strains) was the most common seropathotype, followed by O128:H− stx1stx2 (33 strains) and O6:H10 stx1 (25 strains). Three strains of serotypes O26:H11, O156:H11, and OX177:H11 had intimin type β1; 5 strains of serotype O157:H7 possessed intimin type γ1; and 15 strains of serotypes O49:H−, O52:H12, O156:H− (12 strains), and O156:H25 had the new intimin, intimin type ζ. The majority (82%) of ovine STEC strains belonged to serotypes previously found to be associated with human STEC strains, and 51% belonged to serotypes associated with STEC strains isolated from patients with hemolytic-uremic syndrome. Thus, this study confirms that healthy sheep are a major reservoir of STEC strains pathogenic for humans.
Journal of Antimicrobial Chemotherapy | 2009
Miguel Blanco; M. P. Alonso; Marie-Hélène Nicolas-Chanoine; Ghizlane Dahbi; Azucena Mora; Jesús E. Blanco; Cecilia López; Pilar Cortés; Montserrat Llagostera; Véronique Leflon-Guibout; Beatriz Puentes; Rosalía Mamani; Alexandra Herrera; María Amparo Coira; Fernando García-Garrote; Julia Pita; Jorge Blanco
OBJECTIVESnHaving shown that the Xeral-Calde Hospital in Lugo (Spain) has been concerned by Escherichia coli clone O25:H4-ST131 producing CTX-M-15 (Nicolas-Chanoine et al. J Antimicrob Chemother 2008; 61: 273-81), the present study was carried out to evaluate the prevalence of this clone among the extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates and also to molecularly characterize the E. coli isolates producing ESBL other than CTX-M-15.nnnMETHODSnIn the first part of this study, 105 ESBL-producing E. coli isolates (February 2006 to March 2007) were characterized with regard to ESBL enzymes, serotypes, virulence genes, phylogenetic groups, multilocus sequence typing (MLST) and PFGE. In the second part of this study, 249 ESBL-producing E. coli isolates (April 2007 to May 2008) were investigated only for the detection of clone O25b:H4-ST131 producing CTX-M-15 using a triplex PCR developed in this study and based on the detection of the new operon afa FM955459 and the targets rfbO25b and 3 end of the bla(CTX-M-15) gene.nnnRESULTSnOf the 105 ESBL-producing E. coli isolates, 60 (57.1%) were positive for CTX-M-14, 23 (21.9%) for CTX-M-15, 10 (9.5%) for SHV-12 and 7 (6.7%) for CTX-M-32. Serotypes, virulence genes, phylogenetic groups and molecular typing by PFGE demonstrated high homogeneity within those producing CTX-M-15 and high diversity within E. coli producing CTX-M-14 and other ESBLs. By PFGE, CTX-M-15-producing E. coli isolates O25b:H4 belonging to the phylogenetic group B2 and MLST profile ST131 were grouped in the same cluster. The epidemic strain of clone O25b:H4-ST131 represented 23.1%, 22.5% and 20.0% of all ESBL-producing E. coli isolated in 2006, 2007 and 2008, respectively.nnnCONCLUSIONSnCTX-M-type ESBLs, primarily CTX-M-14 and CTX-M-15, have emerged as the predominant types of ESBL produced by E. coli isolates in Lugo. In view of the reported findings, long-term care facilities for elderly people may represent a significant reservoir for E. coli clone O25b:H4-ST131 producing CTX-M-15. The triplex PCR developed in this work will be useful for rapid and simple detection of this clone.
Epidemiology and Infection | 1996
Miguel Blanco; Jesús E. Blanco; Jorge Blanco; Enrique A. González; Azucena Mora; C. Prado; L Fernandez; M Rio; J. Ramos; M. P. Alonso
From February to July of 1994, 328 faecal samples from 32 herds were collected and verotoxin-producing Escherichia coli (VTEC) found on 84% of the farms. The proportion of animals infected varied from 0-63%. VTEC were recovered from 52 (20%) of 257 cows and from 16 (23%) of 71 calves. Although the VTEC belonged to 25 different serogroups, 7 (O8, O20, O22, O77, O113, O126 and O162) accounted for 46% of strains. Nearly 45% of the strains. Nearly 45% of the 83 bovine VTEC strains belonged to serogroups associated with haemorrhagic colitis and haemolytic uraemic syndrome in humans. However, only 2 (2%) of 83 VTEC strains isolated from cattle belonged to enterohaemorrhagic E. coli (EHEC) serotypes (O26:H11 and O157:H7), and only 8 (10%) were positive for the attaching and effacing E. coli (eae) gene sequence. Polymerase chain reaction (PCR) showed that 17 (20%) of VTEC strains carried VT1 genes, 43 (52%) possessed VT2 genes, and 23 (28%) carried both VT1 and VT2 genes. Characterization of VTEC isolates revelated a heterogeneous population in terms of serogroup and toxin type in the positive herds. This study confirms that healthy cattle are a reservoir of VTEC, but, the absence of eae genes in most bovine VTEC strains suggests that they may be less virulent for humans than eae-positive EHEC.
Veterinary Microbiology | 2003
J. Rey; Jesús E. Blanco; Miguel Blanco; Azucena Mora; Ghizlane Dahbi; J.M. Alonso; Miguel Hermoso; Javier Hermoso; M. P. Alonso; M. A. Usera; Enrique A. González; María Isabel Bernárdez; Jorge Blanco
PROBLEM ADDRESSEDnShiga toxin-producing Escherichia coli (STEC), have emerged as food poisoning pathogens which can cause severe diseases in humans.nnnOBJECTIVEnThe aim of this study was to determinate the serotypes and virulence genes of STEC strains isolated from sheep in Spain, with the purpose of determining whether sheep represent a potential source of STEC pathogenic for humans.nnnMETHODS AND APPROACHnFaecal swabs obtained from 697 healthy lambs on 35 flocks in Spain during the years 2000 and 2001 were examined for STEC using phenotypic (Vero cells) and genotypic (PCR) methods.nnnRESULTSnSTEC O157:H7 strains were isolated from seven (1%) animals in six flocks, whereas non-O157 STEC strains were isolated from 246 (35%) lambs in 33 flocks. A total of 253 ovine STEC strains were identified in this study. PCR showed that 110 (43%) strains carried stx(1) genes, 10 (4%) possessed stx(2) genes and 133 (53%) both stx(1) and stx(2). Enterohaemolysin (ehxA) and intimin (eae) virulence genes were detected in 120 (47%) and in 9 (4%) of the STEC strains. STEC strains belonged to 22 O serogroups and 44 O:H serotypes. However, 70% were of one of these six serogroups (O6, O91, O117, O128, O146, O166) and 71% belonged to only nine serotypes (O6:H10, O76:H19, O91:H-, O117:H-, O128:H-, O128:H2, O146:H21, O157:H7, O166:H28). A total of 10 new O:H serotypes not previously reported in STEC strains were found in this study. Seven strains of serotype O157:H7 possessed intimin type gamma1, and two strains of serotype O156:H- had the new intimin zeta. STEC O157:H7 strains were phage types 54 (four strains), 34 (two strains) and 14 (one strain).nnnCONCLUSIONSnThis study confirms that healthy sheep are a major reservoir of STEC pathogenic for humans. However, because the eae gene is present only in a very small proportion of ovine non-O157 STEC, most ovine strains may be less pathogenic.
Experimental Biology and Medicine | 2003
Jorge Blanco; Miguel Blanco; Jesús E. Blanco; Azucena Mora; Enrique A. González; María Isabel Bernárdez; M. P. Alonso; Amparo Coira; Asunción Rodríguez; J. Rey; J.M. Alonso; M. A. Usera
In Spain, as in many other countries, verotoxin-producing Escherichia coli (VTEC) strains have been frequently isolated from cattle, sheep, and foods. VTEC strains have caused seven outbreaks in Spain (six caused by E. coli O157:H7 and one by E. coli O111:H– [nonmotile]) in recent years. An analysis of the serotypes indicated serological diversity. Among the strains isolated from humans, serotypes O26:H11, O111:H–, and O157:H7 were found to be more prevalent. The most frequently detected serotypes in cattle were O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and OUT (O untypeable):H19. Different VTEC serotypes (e.g., O5:H–, O6:H10, O91:H–, O117:H–, O128:H–, O128:H2, O146:H8, O146:H21, O156:H–, and OUT:H21) were found more frequently in sheep. These observations suggest a host serotype specificity for some VTEC. Numerous bovine and ovine VTEC serotypes detected in Spain were associated with human illnesses, confirming that ruminants are important reservoirs of pathogenic VTEC. VTEC can produce one or two toxins (VT1 and VT2) that cause human illnesses. These toxins are different proteins encoded by different genes. Another virulence factor expressed by VTEC is the protein intimin that is responsible for intimate attachment of VTEC and effacing lesions in the intestinal mucosa. This virulence factor is encoded by the chromosomal gene eae. The eae gene was found at a much less frequency in bovine (17%) and ovine (5%) than in human (45%) non-O157 VTEC strains. This may support the evidence that the eae gene contributes significantly to the virulence of human VTEC strains and that many animal non-O157 VTEC strains are less pathogenic to humans.
Research in Microbiology | 1997
Miguel Blanco; Jesús E. Blanco; M. P. Alonso; Azucena Mora; Carlos Balsalobre; F. Muñoa; Antonio Juárez; Jorge Blanco
A total of 243 Escherichia coli strains isolated from patients with urinary tract infections (UTI) were investigated for the presence of pap, sfa and afa adhesin-encoding operons by using the polymerase chain reaction. It was found that 54%, 53% and 2% of the strains exhibited the pap, sfa and afa genotypes, respectively. Pap+ and/or sfa+ strains were more frequent in cases of acute pyelonephritis (94%) than in cases of cystitis (67%) (P < 0.001) and asymptomatic bacteriuria (57%) (P < 0.001). The pap and/or sfa operons were found in 90% of strains expressing mannose-resistant haemagglutination (MRHA) versus 37% of MRHA-negative strains (P < 0.001). The presence of pap and sfa operons was especially significant in strains belonging to MRHA types III (100%) (without P adhesins) and IVa (97%) (expressing the specific Gal-Gal binding typical of P adhesins). Both pap and sfa operons were closely associated with toxigenic E. coli producing alpha-haemolysin (Hly+) and/or the cytotoxic necrotizing factor type 1. There was an apparent correlation between the pap and sfa operons and the O serogroups of the strains. Thus, 93% of strains belonging to O1, O2, O4, O6, O7, O14, O15, O18, O22, O75 and O83 possessed pap and/or sfa operons, versus only 32% of strains belonging to other serogroups (P < 0.001). The results obtained in this study confirm the usefulness of our MRHA typing system for presumptive identification of pathogenic E. coli exhibiting different virulence factors. Thus, 85% of strains that possessed both pap and sfa adhesin-encoding operons showed MRHA types III or IVa previously associated with virulence of E. coli strains that cause UTI and bacteraemia.
Journal of Medical Microbiology | 1990
Jesús E. Blanco; M. P. Alonso; Enrique A. González; Miguel Blanco; J. I. Garabal
Thirty-seven strains of Escherichia coli isolated from bacteraemia and 40 faecal strains isolated from healthy individuals were O serogrouped and investigated for the production of colicins, haemolysin (Hly), cytotoxic necrotising factor (CNF), lethal activity for mice, the expression of P fimbriae, mannose-resistant (MRHA) and mannose-sensitive (MSHA) haemagglutination, and relative cell surface hydrophobicity. Virulence factors significantly associated with bacteraemic strains were: serogroups O2, O4, O6, O7, O8 and O75 (54% versus 10%, p less than 0.001), production of Hly (32% versus 8%, p less than 0.02) and CNF (38% versus 10%, p less than 0.01), expression of P fimbriae (27% versus 5%, p less than 0.02), MRHA types III, IVa and IVb (51% versus 8%, p less than 0.001), and possession of a moderate cell surface hydrophobic charge (35% versus 13%, p less than 0.05). Virulence factors were strongly associated with strains expressing defined MRHA types. Thus, all strains belonging to MRHA types III and IVa were toxigenic, whereas only 11% of strains belonging to MRHA types IVb, V or VI were toxigenic (p less than 0.001). Virulence factors were concentrated in strains belonging to O serogroups usually found in E. coli that cause extra-intestinal infections, especially in strains of O4 and O6 groups. The most interesting result of this study was that all 12 P-fimbriate strains expressed the MRHA type IVa and 11 of them synthesised CNF.
BMC Microbiology | 2007
Azucena Mora; Miguel Blanco; Jesús E. Blanco; Ghizlane Dahbi; Cecilia López; Paula Justel; M. P. Alonso; Aurora Echeita; María Isabel Bernárdez; Enrique A. González; Jorge Blanco
BackgroundShiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections.ResultsSTEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx1 genes, 49 (51%) possessed stx2 genes, and 19 (20%) both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx1eae-β1, O157:H7 stx1stx2eae-γ1 and O157:H7 stx2eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses.ConclusionThe results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx1eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef.