M. R. M. Izawa
Okayama University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. R. M. Izawa.
Nature | 2015
A. Nathues; M. Hoffmann; M. Schaefer; L. Le Corre; Vishnu Reddy; Thomas Platz; Edward A. Cloutis; Ulrich R. Christensen; T. Kneissl; J.-Y. Li; Kurt Mengel; N. Schmedemann; T. Schaefer; C. T. Russell; Daniel M. Applin; D.L. Buczkowski; M. R. M. Izawa; H. U. Keller; David P. O’Brien; Carle M. Pieters; C.A. Raymond; Joachim Ripken; Paul M. Schenk; Britney E. Schmidt; H. Sierks; Mark V. Sykes; Guneshwar Thangjam; Jean-Baptiste Vincent
The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950u2009kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth–Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.
Icarus | 2014
Vishnu Reddy; Juan A. Sanchez; William F. Bottke; Edward A. Cloutis; M. R. M. Izawa; David Patrick O'Brien; Paul Mann; Matthew Cuddy; Lucille Le Corre; Michael J. Gaffey; Gary Fujihara
We investigated the spectral and compositional properties of Chelyabinsk meteorite to identify its possible parent body in the main asteroid belt. Our analysis shows that the meteorite contains two spectrally distinct but compositionally indistinguishable components of LL5 chondrite and shock blackened/impact melt material. Our X-ray diffraction analysis confirms that the two lithologies of the Chelyabinsk meteorite are extremely similar in modal mineralogy. The meteorite is compositionally similar to LL chondrite and its most probable parent asteroid in the main belt is a member of the Flora family. Our work confirms previous studies (e.g., Vernazza et al. [2008]. Nature 454, 858–860; de Leon, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N., Campins, H. [2010]. Astron. Astrophys. 517, A23; Dunn, T.L., Burbine, T.H., Bottke, W.F., Clark, J.P. [2013]. Icarus 222, 273–282), linking LL chondrites to the Flora family. Intimate mixture of LL5 chondrite and shock blackened/impact melt material from Chelyabinsk provides a spectral match with (8) Flora, the largest asteroid in the Flora family. The Baptistina family and Flora family overlap each other in dynamical space. Mineralogical analysis of (298) Baptistina and 11 small family members shows that their surface compositions are similar to LL chondrites, although their absorption bands are subdued and albedos lower when compared to typical S-type asteroids. A range of intimate mixtures of LL5 chondrite and shock blackened/impact melt material from Chelyabinsk provides spectral matches for all these BAF members. We suggest that the presence of a significant shock/impact melt component in the surface regolith of BAF members could be the cause of lower albedo and subdued absorption bands. The conceptual problem with part of this scenario is that impact melts are very rare within ordinary chondrites. Of the � 42,000 ordinary chondrites, less than 0.5% (203) of them contain impact melts. A major reason that impact melts are rare in meteorites is that high impact velocities (V > 10 km/s) are needed to generate the necessary shock pressures and temperatures (e.g., Pierazzo, E., Melosh, H.J. [1998]. Hydrocode modeling of oblique impacts: The fate of the projectile. In: Origin of the Earth and Moon, Proceedings of the Conference. LPI Contribution No. 957) unless the target material is highly porous. Nearly all asteroid impacts within the main belt are at � 5 km/s (Bottke, W.F., Nolan, M.C., Greenberg, R., Kolvoord, R.A. [1994]. Collisional lifetimes and impact statistics of near-Earth asteroids. In: Tucson, Gehrels T. (Ed.), Hazards Due to Comets and Asteroids. The University of Arizona Press, Arizona, pp. 337–357), which prevents them from producing much impact melt unless they are highly porous. However, shock darkening is an equally efficient process that takes place at much lower impact velocities (� 2 km/s) and can cause the observed spectral effects. Spectral effects of shock darkening and impact melt are identical. The parent asteroid of BAF was either a member of the Flora family or had the same basic composition as the Floras (LL Chondrite). The shock pressures produced during the impact event generated enough impact melt or shock blackening to alter the spectral properties of BAF, but keep the BAF composition largely unchanged. Collisional mixing of shock blackened/impact melt and LL5 chondritic material could have created the Baptistina Asteroid Family with composition identical to those of the Floras, but with subdued absorption
The Astrophysical Journal | 2016
J.-Y. Li; Vishnu Reddy; A. Nathues; Lucille Le Corre; M. R. M. Izawa; Edward A. Cloutis; Mark V. Sykes; U. Carsenty; Julie C. Castillo-Rogez; M. Hoffmann; R. Jaumann; Katrin Krohn; S. Mottola; Thomas H. Prettyman; M. Schaefer; Paul M. Schenk; Stefan E. Schröder; David A. Williams; David E. Smith; Maria T. Zuber; Alexander S. Konopliv; Ryan S. Park; C.A. Raymond; C. T. Russell
Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly nvarying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past nthree decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the nDawn Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local nregions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our nanalysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor nventing, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the nbright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we nsearched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. nThe active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in nour data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable nchanges to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its nrelatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric ndistance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the nactivity.
Nature Communications | 2015
Nigel J.F. Blamey; John Parnell; Sean McMahon; Darren F. Mark; T. Tomkinson; Martin R. Lee; Jared Shivak; M. R. M. Izawa; Neil R. Banerjee; Roberta L. Flemming
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Astrobiology | 2011
Louisa Preston; M. R. M. Izawa; Neil R. Banerjee
Microorganisms have been found to etch volcanic glass within volcaniclastic deposits from the Ontong Java Plateau, creating micron-sized tunnels and pits. The fossil record of such bioalteration textures is interpreted to extend back ∼3.5 billion years to include meta-volcanic glass from ophiolites and Precambrian greenstone belts. Bioalteration features within glass clasts from Leg 192 of the Ocean Drilling Program were investigated through optical microscopy and Fourier transform infrared (FTIR) spectroscopy of petrographic thin sections. Extended depth of focus optical microscopic imaging was used to identify bioalteration tubules within the samples and later combined with FTIR spectroscopy to study the organic molecules present within tubule clusters. The tubule-rich areas are characterized by absorption bands indicative of aliphatic hydrocarbons, amides, esters, and carboxylic groups. FTIR analysis of the tubule-free areas in the cores of glass clasts indicated that they were free of organics. This study further constrains the nature of the carbon compounds preserved within the tubules and supports previous studies that suggest the tubules formed through microbial activity.
Icarus | 2015
Lucille Le Corre; Vishnu Reddy; Juan A. Sanchez; Tasha L. Dunn; Edward A. Cloutis; M. R. M. Izawa; Paul Mann; A. Nathues
Abstract The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System’s history. Ground-based and Hubble Space Telescope (HST) observations of Asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA’s Dawn spacecraft has shown that this “olivine-bearing unit” is actually impact melt in the ejecta of Oppia crater. The lack of widespread mantle olivine, exposed during the formation of the 19xa0km deep Rheasilvia basin on Vesta’s South Pole, further complicated this picture. Ammannito et al. (Ammannito, E. et al. [2013a]. Nature 504, 122–125) reported the discovery of local scale olivine-rich units in the form of excavated material from the mantle using the Visible and InfraRed spectrometer (VIR) on Dawn. These sites are concentrated in the walls and ejecta of craters Arruntia (10.5xa0km in diameter) and Bellicia (41.7xa0km in diameter), located in the northern hemisphere, 350–430xa0km from Rheasilvia basin’s rim. Here we explore alternative sources for the olivine in the northern hemisphere of Vesta by reanalyzing the data from the VIR instrument using laboratory spectral measurements of meteorites. Our rationale for using the published dataset was to bypass calibration issues and ensure a consistent dataset between the two studies. Our analysis of the VIR data shows that while the interpretation of their spectra as an olivine-rich unit is correct, the nature and origin of that olivine could be more complicated. We suggest that these olivine exposures could also be explained by the delivery of olivine-rich exogenic material. This hypothesis is supported by meteoritical evidence in the form of exogenic xenoliths containing significant amount of olivine in some of the HED meteorites from Vesta. Previous laboratory work on HEDs show that potential sources of olivine on Vesta could be different types of olivine-rich meteorites, either primitive achondrites (acapulcoites, lodranites, ureilites), ordinary chondrites (H, L, LL), pallasites, or carbonaceous chondrites (e.g., CV). Based on our spectral band parameters analysis, the lack of correlation between the location of these olivine-rich terrains and possible mantle-excavating events, and supported by observations of HED meteorites, we propose that a probable source for the olivine seen in the northern hemisphere corresponds to remnants of impactors made of olivine-rich meteorites. The best curve-matching results with laboratory spectra suggest these units are HED material mixed with either ordinary chondrites, or with some olivine-dominated meteorites such as R-chondrites.
Geobiology | 2014
Jennifer Ronholm; Dirk Schumann; H. M. Sapers; M. R. M. Izawa; Daniel M. Applin; B. Berg; Paul Mann; Hojatollah Vali; Roberta L. Flemming; Edward A. Cloutis; Lyle G. Whyte
Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying phylotypes consistent with certain mineralogical features is the first step toward discovering a link between these crystal features and the precise underlying molecular biology of the organism precipitating them.
Journal of Geophysical Research | 2010
M. R. M. Izawa; Penelope L. King; Roberta L. Flemming; Ron Peterson; Philip John Albert McCausland
[1] The mineralogy and infrared reflectance spectra of 13 Enstatite (E) chondrite meteorite finds spanning the full range of textural alteration grades in both EL and EH classes have been investigated. Rietveld refinement of high-resolution powder X-ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Sample-correlated mid-infrared (2.0 to 25.0 μm; 4500 cm -1 to 400 cm -1 ) reflectance infrared spectra were collected for each meteorite. Spectral features due to the fundamental lattice vibrations of the silicates, primarily enstatite, dominate the spectra of these meteorites over most of the spectral range investigated. The spectral features related to primary (i.e., pre-terrestrial) mineralogy include fundamental stretching and bending lattice modes (-8.3-25.0 μm; 1200-400 cm -1 ), overtones and combinations of the fundamental modes (∼4.5-6.1 μm; 2200-1650 cm -1 ), and the principle Christensen feature (-8.3 μm; 1200 cm -1 ). Terrestrial weathering products including Fe-oxyhydroxides, gypsum, and carbonates occur in most of these meteorites and contribute to some spectral features: particularly an asymmetric feature near ∼2.6 to 3.8 μm (3800 to 2600 cm -1 ) attributed to adsorbed, hydrogen-bonded, and/or structural OH and H 2 O, and a feature near -6.2 μm (1625 cm - 1 ) attributed to adsorbed, hydrogen-bonded, and/or structural H 2 O. Modal mineral abundances determined by Rietveld refinement have been used to calculate model grain densities for each meteorite. Bulk magnetic susceptibility measurements combined with modal mineralogy and grain densities reveal a trend toward lower grain density and lower bulk susceptibility with increased terrestrial weathering.
Icarus | 2015
Vishnu Reddy; David Vokrouhlický; William F. Bottke; Petr Pravec; Juan A. Sanchez; Bruce L. Gary; R. L. Klima; Edward A. Cloutis; Adrian Galad; Tan Thiam Guan; Kamil Hornoch; M. R. M. Izawa; Peter Kusnirak; Lucille Le Corre; Paul Mann; Nicholas A. Moskovitz; Brian A. Skiff; J. Vraštil
We explored the statistical and compositional link between Chelyabinsk meteoroid and potentially haz- ardous Asteroid (86039) 1999 NC43 to investigate their proposed relation proposed by Borovicka et al. (Borovicka, J., et al. (2013). Nature 503, 235-237). First, using a slightly more detailed computation we confirm that the orbit of the Chelyabinsk impactor is anomalously close to the Asteroid 1999 NC43. We find � (1-3) � 10 � 4 likelihood of that to happen by chance. Taking the standpoint that the Chelya- binsk impactor indeed separated from 1999 NC43 by a cratering or rotational fission event, we run a for- ward probability calculation, which is an independent statistical test. However, we find this scenario is unlikely at the � (10 � 3 -10
Astrobiology | 2011
M. R. M. Izawa; Neil R. Banerjee; Gordon R. Osinski; Roberta L. Flemming; John Parnell; Charles S. Cockell
Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface gossans, banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales.