Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Rebolledo-Vieyra is active.

Publication


Featured researches published by M. Rebolledo-Vieyra.


Science | 2010

The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary

Peter Schulte; Laia Alegret; Ignacio Arenillas; José Antonio Arz; Penny J. Barton; Paul R. Bown; Timothy J. Bralower; Gail L. Christeson; Philippe Claeys; Charles S. Cockell; Gareth S. Collins; Alexander Deutsch; Tamara Joan Goldin; Kazuhisa Goto; José Manuel Grajales-Nishimura; R. A. F. Grieve; Sean Paul Sandifer Gulick; Kirk R. Johnson; Wolfgang Kiessling; Christian Koeberl; David A. Kring; Kenneth G MacLeod; Takafumi Matsui; Jay Melosh; Alessandro Montanari; Joanna Morgan; Clive R. Neal; Douglas J. Nichols; Richard D. Norris; Elisabetta Pierazzo

The Fall of the Dinosaurs According to the fossil record, the rule of dinosaurs came to an abrupt end ∼65 million years ago, when all nonavian dinosaurs and flying reptiles disappeared. Several possible mechanisms have been suggested for this mass extinction, including a large asteroid impact and major flood volcanism. Schulte et al. (p. 1214) review how the occurrence and global distribution of a global iridium-rich deposit and impact ejecta support the hypothesis that a single asteroid impact at Chicxulub, Mexico, triggered the extinction event. Such an impact would have instantly caused devastating shock waves, a large heat pulse, and tsunamis around the globe. Moreover, the release of high quantities of dust, debris, and gases would have resulted in a prolonged cooling of Earths surface, low light levels, and ocean acidification that would have decimated primary producers including phytoplankton and algae, as well as those species reliant upon them. The Cretaceous-Paleogene boundary ~65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Science | 2016

The formation of peak rings in large impact craters

Joanna Morgan; Sean Paul Sandifer Gulick; Timothy J. Bralower; E. Chenot; Gail L. Christeson; Philippe Claeys; Charles S. Cockell; Gareth S. Collins; M.J.L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; H. Jones; David A. Kring; Erwan Le Ber; Johanna Lofi; Xiao Long; Christopher M. Lowery; Claire Mellett; R. Ocampo-Torres; Gordon R. Osinski; Ligia Pérez-Cruz; A.E. Pickersgill; Michael H. Poelchau; A. Rae; C. Rasmussen; M. Rebolledo-Vieyra; Ulrich Riller; Honami Sato; Douglas R. Schmitt

Drilling into Chicxulubs formation The Chicxulub impact crater, known for its link to the demise of the dinosaurs, also provides an opportunity to study rocks from a large impact structure. Large impact craters have “peak rings” that define a complex crater morphology. Morgan et al. looked at rocks from a drilling expedition through the peak rings of the Chicxulub impact crater (see the Perspective by Barton). The drill cores have features consistent with a model that postulates that a single over-heightened central peak collapsed into the multiple-peak-ring structure. The validity of this model has implications for far-ranging subjects, from how giant impacts alter the climate on Earth to the morphology of crater-dominated planetary surfaces. Science, this issue p. 878; see also p. 836 Rock samples from IODP/ICDP Expedition 364 support the dynamic collapse model for the formation of the Chicxulub crater. Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.


Earth, Planets and Space | 2006

Magnetostratigraphy of the Cretaceous/Tertiary boundary and early Paleocene sedimentary sequence from the Chicxulub Impact Crater

M. Rebolledo-Vieyra; Jaime Urrutia-Fucugauchi

We report on the magnetostratigraphy of the Chicxulub crater impact breccias and first 15 meters of the Paleocene sedimentary sequence recovered in three boreholes of the UNAM Scientific Drilling Program. Three geomagnetic polarity zones are documented in the impact breccias and sedimentary sequence, which span from chron 29R to 28N. For the 15 m interval they represent ∼2.5 Ma, which yields low apparent sedimentary rates for boreholes UNAM-5 (110 km from the center of the crater) and UNAM-7 (127 km from the center of the crater). The carbonate sedimentary sequence can be associated to a shallow basin depositional environment. In these boreholes the thickness between the 29R and the 29N chrons is just 0.5 m, suggesting that during the 100 ka from the K/T boundary to the polarity transition sediments were not deposited or eroded. Within borehole UNAM-6 (152 km from the center of the crater) it appears that sediments containing chron 29N are missing, the lack of the upper breccias, the long duration of a reversal event within the base of the sequence and low apparent sedimentary rate of 3.3 m/Ma, suggests a hiatus within the impact breccias and the basal Paleocene sedimentary sequence. Magnetic susceptibility logs confirm absence of the upper breccias at UNAM-6 borehole. Magnetic susceptibility values increase towards the base of the sequence, suggesting that basement and melt clasts were subjected to a low temperature hydrothermal alteration.


Eos, Transactions American Geophysical Union | 2005

Chicxulub Crater Seismic Survey prepares way for future drilling

J. V. Morgan; Jaime Urrutia-Fucugauchi; Sean Paul Sandifer Gulick; Gail L. Christeson; Penny J. Barton; M. Rebolledo-Vieyra; Jay Melosh

Sixty-five million years ago, a large meteorite hit the Earth and formed the ∼200-km-wide Chicxulub crater in Yucatan, Mexico. The well-known, massive extinction event at the Cretaceous-Tertiary (K-T) boundary appears to have been caused, at least in part, by this impact. In the first few seconds after impact the surface of the Earth was pushed down to form a cavity ∼35 km deep, and in the next few hundred seconds this cavity collapsed to form a multi-ring basin with an inner peak ring. To examine the rings and subsurface structure of this superbly preserved impact crater, a seismic experiment was shot across the crater in January and February 2005 by a team of scientists from Mexico, the United States, and the United Kingdom (Figure 1).


Gsa Today | 2017

Chicxulub and the Exploration of Large Peak-Ring Impact Craters through Scientific Drilling

David A. Kring; Philippe Claeys; Sean Paul Sandifer Gulick; Joanna Morgan; Gareth S. Collins; Timothy J. Bralower; E. Chenot; Gail L. Christeson; Charles S. Cockell; M.J.L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; H. Jones; Johanna Lofi; Christopher M. Lowery; Claire Mellett; R. Ocampo-Torres; Ligia Pérez-Cruz; A.E. Pickersgill; Michael H. Poelchau; A. Rae; C. Rasmussen; M. Rebolledo-Vieyra; Ulrich Riller; Honami Sato; Jan Smit; Sonia M. Tikoo; Naotaka Tomioka; Jaime Urrutia-Fucugauchi

The Chicxulub crater is the only well-preserved peak-ring crater on Earth and linked, famously, to the K-T or K-Pg mass extinction event. For the first time, geologists have drilled into the peak ring of that crater in the International Ocean Discovery Program and International Continental Scientific Drilling Program (IODP-ICDP) Expedition 364. The Chicxulub impact event, the environmental calamity it produced, and the paleobiological consequences are among the most captivating topics being discussed in the geologic community. Here we focus attention on the geological processes that shaped the ~200-km-wide impact crater responsible for that discussion and the expedition’s first year results.


Nature | 2018

Rapid recovery of life at ground zero of the end-Cretaceous mass extinction

Christopher M. Lowery; Timothy J. Bralower; Jeremy D. Owens; Francisco J. Rodríguez-Tovar; H. Jones; Jan Smit; Michael T. Whalen; Phillipe Claeys; Kenneth A. Farley; Sean Paul Sandifer Gulick; Joanna Morgan; S.L. Green; E. Chenot; Gail L. Christeson; Charles S. Cockell; M.J.L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; David A. Kring; Johanna Lofi; R. Ocampo-Torres; Ligia Pérez-Cruz; A.E. Pickersgill; Michael H. Poelchau; A. Rae; C. Rasmussen; M. Rebolledo-Vieyra; Ulrich Riller; Honami Sato

The Cretaceous/Palaeogene mass extinction eradicated 76% of species on Earth1,2. It was caused by the impact of an asteroid3,4 on the Yucatán carbonate platform in the southern Gulf of Mexico 66 million years ago5, forming the Chicxulub impact crater6,7. After the mass extinction, the recovery of the global marine ecosystem—measured as primary productivity—was geographically heterogeneous8; export production in the Gulf of Mexico and North Atlantic–western Tethys was slower than in most other regions8–11, taking 300 thousand years (kyr) to return to levels similar to those of the Late Cretaceous period. Delayed recovery of marine productivity closer to the crater implies an impact-related environmental control, such as toxic metal poisoning12, on recovery times. If no such geographic pattern exists, the best explanation for the observed heterogeneity is a combination of ecological factors—trophic interactions13, species incumbency and competitive exclusion by opportunists14—and ‘chance’8,15,16. The question of whether the post-impact recovery of marine productivity was delayed closer to the crater has a bearing on the predictability of future patterns of recovery in anthropogenically perturbed ecosystems. If there is a relationship between the distance from the impact and the recovery of marine productivity, we would expect recovery rates to be slowest in the crater itself. Here we present a record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200 kyr of the Palaeocene. We show that life reappeared in the basin just years after the impact and a high-productivity ecosystem was established within 30 kyr, which indicates that proximity to the impact did not delay recovery and that there was therefore no impact-related environmental control on recovery. Ecological processes probably controlled the recovery of productivity after the Cretaceous/Palaeogene mass extinction and are therefore likely to be important for the response of the ocean ecosystem to other rapid extinction events.Micro- and nannofossil, trace fossil and geochemical evidence from the Chicxulub impact crater demonstrates that proximity to the asteroid impact site did not determine rates of recovery of marine ecosystems after the end-Cretaceous mass extinction.


Meteoritics & Planetary Science | 2004

Magnetostratigraphy of the impact breccias and post-impact carbonates from borehole Yaxcopoil-1, Chicxulub impact crater, Yucatán, Mexico

M. Rebolledo-Vieyra; Jaime Urrutia-Fucugauchi


Physics of the Earth and Planetary Interiors | 2004

Archaeomagnetic studies in central Mexico—dating of Mesoamerican lime-plasters

Y. Hueda-Tanabe; Ana Maria Soler-Arechalde; Jaime Urrutia-Fucugauchi; Luis Barba; Linda Manzanilla; M. Rebolledo-Vieyra; Avto Goguitchaichvili


Meteoritics & Planetary Science | 2004

Paleomagnetic and rock magnetic study of the Yaxcopoil‐1 impact breccia sequence, Chicxulub impact crater (Mexico)

Jaime Urrutia-Fucugauchi; Ana Maria Soler-Arechalde; M. Rebolledo-Vieyra; P. Vera‐Sanchez


Physics of the Earth and Planetary Interiors | 2011

Paleomagnetism of impact breccias from the Chicxulub crater – Implications for ejecta emplacement and hydrothermal processes

Miriam Velasco-Villareal; Jaime Urrutia-Fucugauchi; M. Rebolledo-Vieyra; Ligia Pérez-Cruz

Collaboration


Dive into the M. Rebolledo-Vieyra's collaboration.

Top Co-Authors

Avatar

Jaime Urrutia-Fucugauchi

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Kring

Lunar and Planetary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy J. Bralower

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ligia Pérez-Cruz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge