Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Shamsudduha is active.

Publication


Featured researches published by M. Shamsudduha.


Journal of Contaminant Hydrology | 2008

Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh

R. K. Dhar; Yan Zheng; Martin Stute; A. van Geen; Zhongqi Cheng; M. Shanewaz; M. Shamsudduha; M. A. Hoque; Marina Rahman; Kazi Matin Ahmed

Samples were collected every 2-4 weeks from a set of 37 monitoring wells over a period of 2-3 years in Araihazar, Bangladesh, to evaluate the temporal variability of groundwater composition for As and other constituents. The monitoring wells are grouped in 6 nests and span the 5-91 m depth range. Concentrations of As, Ca, Fe, K, Mg, Mn, Na, P, and S were measured by high-resolution ICPMS with a precision of 5% or better; concentrations of Cl were measured by ion chromatography. In shallow wells <30 m deep, As and P concentrations generally varied by <30%, whereas concentrations of the major ions (Na, K, Mg, Ca and Cl) and the redox-sensitive elements (Fe, Mn, and S) varied over time by up to +/-90%. In wells tapping the deeper aquifers >30 m often below clay layers concentrations of groundwater As were much lower and varied by <10%. The concentrations of major cations also varied by <10% in these deep aquifers. In contrast, the concentration of redox-sensitive constituents Fe, S, and Mn in deep aquifers varied by up to 97% over time. Thus, strong decoupling between variations in As and Fe concentrations is evident in groundwaters from shallow and deep aquifers. Comparison of the time series data with groundwater ages determined by (3)H/(3)He and (14)C dating shows that large seasonal or inter-annual variations in major cation and chloride concentrations are restricted to shallow aquifers and groundwater recharged <5 years ago. There is no corresponding change in As concentrations despite having significant variations of redox sensitive constituents in these very young waters. This is attributed to chemical buffering due to rapid equilibrium between solute and solid As. At two sites where the As content of groundwater in existing shallow wells averages 102 microg/L (range: <5 to 648 microg/L; n=118) and 272 microg/L (range: 10 to 485 microg/L; n=65), respectively, a systematic long-term decline in As concentrations lends support to the notion that flushing may slowly deplete an aquifer of As. Shallow aquifer water with >5 years (3)H/(3)He age show a constant As:P molar ratio of 9.6 over time, suggesting common mechanisms of mobilization.


Journal of Contaminant Hydrology | 2008

Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

M. Shamsudduha; Ashraf Uddin; James A. Saunders; M.-K. Lee

This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.


Bulletin of The World Health Organization | 2003

Community wells to mitigate the arsenic crisis in Bangladesh

Alexander van Geen; Kazi Matin Ahmed; Ashraf Ali Seddique; M. Shamsudduha

OBJECTIVE To monitor the effectiveness of deep community wells in reducing exposure to elevated levels of arsenic in groundwater pumped from shallower aquifers. METHODS Six community wells ranging in depth from 60 m to 140 m were installed in villages where very few of the wells already present produced safe water. By means of flow meters and interviews with villagers carrying water from the community wells, a study was made of the extent to which these were used during one year. The results were compared with household and well data obtained during a previous survey in the same area. FINDINGS The mean arsenic concentration in water pumped from wells already in use in the villages where the community wells, were installed was 180 +/- 140 micrograms/l (n = 956). Monthly sampling for 4-11 months showed that arsenic levels in groundwater from five of the six newly installed wells were consistently within the WHO guideline value of 10 micrograms/l for drinking-water. One of these wells met the Bangladesh standard of 50 micrograms/l arsenic but failed to meet the WHO guideline values for manganese and uranium in drinking-water. The community wells were very popular. Many women walked hundreds of metres each day to fetch water from them. On average, 2200 litres were hand-pumped daily from each community well, regardless of the season. CONCLUSION A single community well can meet the needs of some 500 people residing within a radius of 150 m of it in a densely populated village. Properly monitored community wells should become more prominent in campaigns to reduce arsenic exposure in Bangladesh. Between 8000 and 10,000 deep community wells are needed to provide safe water for the four to five million people living in the most severely affected parts of the country.


Journal of Hydrology | 2016

Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh

Peter S. K. Knappett; Brian J. Mailloux; I. Choudhury; Mahfuzur R. Khan; Holly A. Michael; S. Barua; D.R. Mondal; Michael S. Steckler; S.H. Akhter; Kazi Matin Ahmed; Benjamin C. Bostick; Charles F. Harvey; M. Shamsudduha; Pin Shuai; I. Mihajlov; R. Mozumder; A. van Geen

Sandy aquifers deposited >12,000 years ago, some as shallow as 30 m, have provided a reliable supply of low-arsenic (As) drinking water in rural Bangladesh. This study concerns the potential risk of contaminating these aquifers in areas surrounding the city of Dhaka where hydraulic heads in aquifers >150 m deep have dropped by 70 m in a few decades due to municipal pumping. Water levels measured continuously from 2012 to 2014 in 12 deep (>150m), 3 intermediate (90-150 m) and 6 shallow (<90 m) community wells, 1 shallow private well, and 1 river piezometer show that the resulting drawdown cone extends 15-35 km east of Dhaka. Water levels in 4 low-As community wells within the 62-147 m depth range closest to Dhaka were inaccessible by suction for up to a third of the year. Lateral hydraulic gradients in the deep aquifer system ranged from 1.7×10-4 to 3.7×10-4 indicating flow towards Dhaka throughout 2012-2014. Vertical recharge on the edge of the drawdown cone was estimated at 0.21±0.06 m/yr. The data suggest that continued municipal pumping in Dhaka could eventually contaminate some relatively shallow community wells.


Water Resources Research | 2015

A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

M. Shamsudduha; Richard G. Taylor; Richard E. Chandler

Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater.


Hydrogeology Journal | 2017

Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia

H.C. Bonsor; A.M. MacDonald; Kazi Matin Ahmed; Wg Burgess; M. Basharat; Roger Calow; Ajaya Dixit; Stephen Foster; K. Gopal; Dan Lapworth; Marcus Moench; Abhijit Mukherjee; M. S. Rao; M. Shamsudduha; L. Smith; Richard G. Taylor; Josephine Tucker; F. van Steenbergen; S.K. Yadav; Anwar Zahid

The Indo-Gangetic aquifer is one of the world’s most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas.RésuméL’aquifère de l’Indus et du Gange est une des ressources en eau transfrontalière la plus importante au monde et un des aquifères le plus exploité au monde. Pour mieux comprendre le système aquifère, des typologies ont été caractérisées pour cet aquifère ; elles intègrent pour la première fois un jeu de données disponibles sur l’ensemble du bassin de l’Indus et du Gange à une échelle transfrontalière, et apportent une conceptualisation alternative de ce système aquifère. Traditionnellement considéré et cartographié comme un simple aquifère homogène aux propriétés aquifères similaires et comme une ressource d’eau souterraine à l’échelle transfrontalière, les typologies mettent en évidence des différences significatives spatiales de la recharge, de la perméabilité, de la capacité de stockage et de la chimie des eaux souterraines sur l’ensemble du système aquifère à une échelle transfrontalière. Ces changements sont systématiques coïncidant aux changements à large échelle de la sédimentologie de l’aquifère alluvial du Pléistocène et de l’Holocène, du climat et des pratiques récentes d’irrigation. Sept typologies de l’aquifère sont présentées, chacune ayant un ensemble distinct de défis et d’opportunités pour le développement des eaux souterraines et une résilience différente à l’exploitation et au changement climatique. Les sept typologies sont: (1) la marge de piedmont, (2) Le haut Indus et le Ganges moyen supérieur, (3) le Ganges inférieur et le Brahmapoutre moyen, (4) la zone deltaïque du bassin du Bengale sous influence fluviale, (5) l’Indus moyen et le Ganges supérieur, (6) l’Indus inférieur, et (7) la zone deltaïque sous influence marine.ResumenEl acuífero Indo-Gangético es uno de los recursos hídricos transfronterizos más importantes y el acuífero más explotado del mundo. Para comprender mejor el sistema acuífero, por primera vez se han caracterizado tipologías para el acuífero, integrando los conjuntos de datos existentes a través de la cuenca hidrográfica Indo-Ganges a una escala transfronteriza, y proporcionando una conceptualización alternativa de este sistema acuífero. Tradicionalmente consideradas y cartografiadas como un solo acuífero homogéneo de propiedades acuíferas y recursos de agua subterránea comparables a escala transfronteriza, las tipologías iluminan diferencias espaciales significativas en la recarga, permeabilidad, almacenamiento y química del agua subterránea a través del sistema acuífero a esta escala transfronteriza. Estos cambios son mostrados por ser sistemáticos, coincidentes con cambios en gran escala en la sedimentología del acuífero aluvial del Pleistoceno y del Holoceno, en el clima y en las prácticas recientes de riego. Se presentan siete tipologías del acuífero, cada una con un conjunto distinto de desafíos y oportunidades para el desarrollo del agua subterránea y una diferente resiliencia a la extracción y al cambio climático. Las siete tipologías son: (1) el margen del piedemonte, (2) el Indus superior y el Ganges superior-medio, (3) el Ganges inferior y el Brahmaputra medio, (4) el área deltaica fluvialmente influenciada de la cuenca de Bengala, (5) el Ganges superior, (6) el Indo Inferior, y (7) las áreas deltaicas con influencia marina.摘要印度-恒河含水层是世界上最重要的跨界水资源之一,也是世界上开采量最大的含水层。为了更好地了解含水层系统,结合现有的印度-恒河流域盆地数据,第一次在跨界尺度上对含水层的类型进行了特征描述,提供了这个含水层系统供选择的概念模型。传统上,被认为并被绘制为可比较含水层特性的单一均质含水层及跨界尺度上地下水资源,类型学阐明了这个跨界尺度上含水层系统补给、透水率、储存量和地下水化学上的重要空间差别。这些变化显示与更新世和全新世冲积含水层、气候和最近灌溉实践沉积学上的大尺度变化是系统性的、也是一致的。展示了含水层的七个类型,每个类型都具有一套独特的地下水开发的挑战和机会以及针对抽水和气候变化的不同恢复力。七个类型为:(1)山前边缘;(2)印度河上游及恒河中上游;(3)恒河下游及雅鲁藏布江中游;(4)孟加拉流域洪积影响的三角洲地区;(5)印度河中游及恒河上游;(6)印度河下游;(7)海相影响的三角洲地区。ResumoO aquífero do Indo-Gangético é um dos recursos hídricos transfronteiriços mais importantes do mundo, e o mais explorado. Para melhor entender o sistema aquífero, tipologias foram caracterizadas para o aquífero, que integram pela primeira vez bancos de dados existentes sobre a bacia de abastecimento Indo-Gangética em uma escala transfornteiriça, e fornecem uma conceptualização alternativa desse sistema aquífero. Tradicionalmente considerado e mapeado como um aquífero homogêneo de propriedades aquíferas comparáveis e recursos subterrâneos em escala transfronteiriça, as tipologias elucidam diferenças espaciais significantes na recarga, permeabilidade, armazenamento, e química das águas subterrâneas pelo aquífero nessa escala transfronteiriça. Essas mudanças aparentam ser sistemáticas, concorrentes com mudanças em larga escala na sedimentologia do aquífero aluvial do Pleistoceno e Holoceno, clima e práticas recentes de irrigação. Sete tipologias do aquífero são apresentadas, cada uma tendo conjuntos de desafios e oportunidades distintos para o desenvolvimento das águas subterrâneas e uma resiliência diferente nas mudanças de extração e clima. As sete tipologias são: (1) a margem piemonte, (2) O Alto Indo e o Alto-médio Ganges, (3) O Baixo Ganges e o Médio Brahmaputra, (4) a área deltaica influenciada fluvialmente da Bacia de Bengala, (5) o Médio Indo e o Alto Ganges, (6) o Baixo Indo, e (7) as áreas deltaicas com influencia marinha.


Scientific Reports | 2017

Terrestrial water load and groundwater fluctuation in the Bengal Basin

Wg Burgess; M. Shamsudduha; Richard G. Taylor; Anwar Zahid; Kazi Matin Ahmed; Abhijit Mukherjee; Dan Lapworth; V.F. Bense

Groundwater-level fluctuations represent hydraulic responses to changes in groundwater storage due to aquifer recharge and drainage as well as to changes in stress that include water mass loading and unloading above the aquifer surface. The latter ‘poroelastic’ response of confined aquifers is a well-established phenomenon which has been demonstrated in diverse hydrogeological environments but is frequently ignored in assessments of groundwater resources. Here we present high-frequency groundwater measurements over a twelve-month period from the tropical, fluvio-deltaic Bengal Aquifer System (BAS), the largest aquifer in south Asia. The groundwater level fluctuations are dominated by the aquifer poroelastic response to changes in terrestrial water loading by processes acting over periods ranging from hours to months; the effects of groundwater flow are subordinate. Our measurements represent the first direct, quantitative identification of loading effects on groundwater levels in the BAS. Our analysis highlights the potential limitations of hydrogeological analyses which ignore loading effects in this environment. We also demonstrate the potential for employing poroelastic responses in the BAS and across other tropical fluvio-deltaic regions as a direct, in-situ measure of changes in terrestrial water storage to complement analyses from the Gravity and Climate Experiment (GRACE) mission but at much higher resolution.


Geophysical Research Letters | 2018

Security of deep groundwater in the coastal Bengal Basin revealed by tracers

Dan Lapworth; Anwar Zahid; Richard G. Taylor; Wg Burgess; M. Shamsudduha; Kazi Matin Ahmed; Abhijit Mukherjee; Daren Gooddy; D. Chatterjee; A.M. MacDonald

Uncertainty persists regarding the vulnerability of deep groundwater across Asias megadeltas. In the coastal Bengal Basin aquifer system, shallow groundwater ( 80 million people. Here we report new radiocarbon evidence from a network of nine dedicated, multi‐level monitoring wells which indicates residence times of between 103 and 104 years for groundwater at depths >150 m. Modern groundwater detected in some deep abstraction wells using anthropogenic tracers (SF6, CFCs) is attributed to short‐circuiting of shallow groundwater within wells. Age‐depth profiles and hydrochemical data in monitoring wells confirm the regional resilience of deep groundwater to ingress of shallow contaminated groundwater. Our results are consistent with high regional anisotropy in the aquifer and support continued use of deep groundwater though the potential for leakage of shallow contaminated groundwater in deep abstraction wells requires careful monitoring.


Archive | 2018

Impacts of Human Development and Climate Change on Groundwater Resources in Bangladesh

M. Shamsudduha

Groundwater has been playing a central role in drinking and irrigation water supplies in Bangladesh for more than four decades. Today, nearly 97% of all drinking water supplies in Bangladesh come from groundwater via hand-operated tubewells that tap the shallow part (<150 m bgl) of the Bengal Aquifer System (BAS). Groundwater-fed irrigation, that currently meets 80% of irrigation water supplies, has been sustaining the dry-season high-yielding “Boro” rice cultivation since the 1970s that has made Bangladesh nearly self-sufficient in food production and led to major economic development. The shallow groundwater is, however, facing major challenges: (1) widespread, natural contamination of arsenic (As) and salinity in coastal areas and (2) rapid depletion of groundwater storage in intensely irrigated areas (e.g., Barind Tract) and major metropolitan cities like Dhaka City. Substantial declines in shallow groundwater levels are currently leading toward an “unsustainable” condition for low-cost pumping technologies (e.g., hand pumps, shallow irrigation wells) and threatening food security. In contrast, intensive dry-season abstraction has also led to increased groundwater recharge by enabling pumping-induced greater infiltrations of rain and surface water during the wet season in areas where surface geologies are permeable and potential recharge is high—realizing the idea of the Ganges Water Machine. Although the impacts of human development of groundwater resources are evident, it is unclear how changing climate will affect groundwater quality and quantity. In addition, recently, there is an increased focus on the development of deep groundwater in Bangladesh to mitigate As and salinity problems. However, little is known about recharge mechanisms and long-term security of the deep groundwater resource in Bangladesh.


Hydrology and Earth System Sciences Discussions | 2018

The El Niño event of 2015n16: Climate anomalies and their impact on groundwater resources in East and Southern Africa

Seshagiri Rao Kolusu; M. Shamsudduha; Martin C. Todd; Richard G. Taylor; David Seddon; Japhet J. Kashaigili; Girma Y. Ebrahim; Mark O. Cuthbert; James Sorensen; Karen G. Villholth; A.M. MacDonald; Dave A. MacLeod

The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the Equator (EASE), during the major El Niño event of 2015–2016, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and Gravity Recovery and Climate Experiment (GRACE) satellite data. At the continental scale, the El Niño of 2015–2016 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north–south of ∼ 12 S, a characteristic pattern of the El Niño–Southern Oscillation (ENSO). Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the standardised precipitation evapotranspiration index – SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing, and we estimate that anthropogenic warming only (ignoring changes to other climate variables, e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–2016 El Niño event, anomalously wet conditions were observed with an estimated return period of ∼ 10 years, likely moderated by the absence of a strongly positive Indian Ocean zonal mode phase. The strong but not extreme rainy season increased groundwater storage, as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events. Published by Copernicus Publications on behalf of the European Geosciences Union. 1752 S. R. Kolusu et al.: The El Niño event of 2015–2016: climate anomalies

Collaboration


Dive into the M. Shamsudduha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. A. Hoque

University College London

View shared research outputs
Top Co-Authors

Avatar

Wg Burgess

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M. MacDonald

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dan Lapworth

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Abhijit Mukherjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ashraf Uddin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge