M. Sloan Siegrist
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Sloan Siegrist.
Proceedings of the National Academy of Sciences of the United States of America | 2009
M. Sloan Siegrist; Meera Unnikrishnan; Matthew J. McConnell; Mark L. Borowsky; Tan-Yun Cheng; Noman Siddiqi; Sarah M. Fortune; D. Branch Moody; Eric J. Rubin
The Esx secretion pathway is conserved across Gram-positive bacteria. Esx-1, the best-characterized system, is required for virulence of Mycobacterium tuberculosis, although its precise function during infection remains unclear. Esx-3, a paralogous system present in all mycobacterial species, is required for growth in vitro. Here, we demonstrate that mycobacteria lacking Esx-3 are defective in acquiring iron. To compete for the limited iron available in the host and the environment, these organisms use mycobactin, high-affinity iron-binding molecules. In the absence of Esx-3, mycobacteria synthesize mycobactin but are unable to use the bound iron and are impaired severely for growth during macrophage infection. Mycobacteria thus require a specialized secretion system for acquiring iron from siderophores.
ACS Chemical Biology | 2013
M. Sloan Siegrist; Sarah A. Whiteside; John C. Jewett; Arjun K. Aditham; Felipe Cava; Carolyn R. Bertozzi
Peptidoglycan (PG) is an essential component of the bacterial cell wall. Although experiments with organisms in vitro have yielded a wealth of information on PG synthesis and maturation, it is unclear how these studies translate to bacteria replicating within host cells. We report a chemical approach for probing PG in vivo via metabolic labeling and bioorthogonal chemistry. A wide variety of bacterial species incorporated azide and alkyne-functionalized d-alanine into their cell walls, which we visualized by covalent reaction with click chemistry probes. The d-alanine analogues were specifically incorporated into nascent PG of the intracellular pathogen Listeria monocytogenes both in vitro and during macrophage infection. Metabolic incorporation of d-alanine derivatives and click chemistry detection constitute a facile, modular platform that facilitates unprecedented spatial and temporal resolution of PG dynamics in vivo.
Journal of the American Chemical Society | 2012
Benjamin M. Swarts; Cynthia M. Holsclaw; John C. Jewett; Marina Alber; Douglas M. Fox; M. Sloan Siegrist; Julie A. Leary; Rainer Kalscheuer; Carolyn R. Bertozzi
Mycobacteria, including the pathogen Mycobacterium tuberculosis, use the non-mammalian disaccharide trehalose as a precursor for essential cell-wall glycolipids and other metabolites. Here we describe a strategy for exploiting trehalose metabolic pathways to label glycolipids in mycobacteria with azide-modified trehalose (TreAz) analogues. Subsequent bioorthogonal ligation with alkyne-functionalized probes enabled detection and visualization of cell-surface glycolipids. Characterization of the metabolic fates of four TreAz analogues revealed unique labeling routes that can be harnessed for pathway-targeted investigation of the mycobacterial trehalome.
Fems Microbiology Reviews | 2015
M. Sloan Siegrist; Benjamin M. Swarts; Douglas M. Fox; Shion A. Lim; Carolyn R. Bertozzi
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Mbio | 2014
M. Sloan Siegrist; Magnus Steigedal; Rushdy Ahmad; Alka Mehra; Marte Singsås Dragset; Brian M. Schuster; Jennifer A. Philips; Steven A. Carr; Eric J. Rubin
ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute. Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.
PLOS Genetics | 2015
Kelly A. Fimlaid; Owen Jensen; M. Lauren Donnelly; M. Sloan Siegrist; Aimee Shen
Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the “feeding tube,” that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission.
Cell Reports | 2015
M. Sloan Siegrist; Arjun K. Aditham; Akbar Espaillat; Todd A. Cameron; Sarah A. Whiteside; Felipe Cava; Daniel A. Portnoy; Carolyn R. Bertozzi
Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.
Methods of Molecular Biology | 2009
M. Sloan Siegrist; Eric J. Rubin
Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.
eLife | 2018
Alam García-Heredia; Amol Arunrao Pohane; Emily S. Melzer; Caleb R Carr; Taylor J. Fiolek; Sarah R. Rundell; Hoong Chuin Lim; Jeffrey Wagner; Yasu S. Morita; Benjamin M. Swarts; M. Sloan Siegrist
Rod-shaped mycobacteria expand from their poles, yet d-amino acid probes label cell wall peptidoglycan in this genus at both the poles and sidewall. We sought to clarify the metabolic fates of these probes. Monopeptide incorporation was decreased by antibiotics that block peptidoglycan synthesis or l,d-transpeptidation and in an l,d-transpeptidase mutant. Dipeptides complemented defects in d-alanine synthesis or ligation and were present in lipid-linked peptidoglycan precursors. Characterizing probe uptake pathways allowed us to localize peptidoglycan metabolism with precision: monopeptide-marked l,d-transpeptidase remodeling and dipeptide-marked synthesis were coincident with mycomembrane metabolism at the poles, septum and sidewall. Fluorescent pencillin-marked d,d-transpeptidation around the cell perimeter further suggested that the mycobacterial sidewall is a site of cell wall assembly. While polar peptidoglycan synthesis was associated with cell elongation, sidewall synthesis responded to cell wall damage. Peptidoglycan editing along the sidewall may support cell wall robustness in pole-growing mycobacteria.
Mbio | 2018
Jennifer M. Hayashi; Kirill Richardson; Emily S. Melzer; Steven J. Sandler; Bree B. Aldridge; M. Sloan Siegrist; Yasu S. Morita
ABSTRACT Cell elongation occurs primarily at the mycobacterial cell poles, but the molecular mechanisms governing this spatial regulation remain elusive. We recently reported the presence of an intracellular membrane domain (IMD) that was spatially segregated from the conventional plasma membrane in Mycobacterium smegmatis. The IMD is enriched in the polar region of actively elongating cells and houses many essential enzymes involved in envelope biosynthesis, suggesting its role in spatially restricted elongation at the cell poles. Here, we examined reorganization of the IMD when the cells are no longer elongating. To monitor the IMD, we used a previously established reporter strain expressing fluorescent IMD markers and grew it to the stationary growth phase or exposed the cells to nutrient starvation. In both cases, the IMD was delocalized from the cell pole and distributed along the sidewall. Importantly, the IMD could still be isolated biochemically by density gradient fractionation, indicating its maintenance as a membrane domain. Chemical and genetic inhibition of peptidoglycan biosynthesis led to the delocalization of the IMD, suggesting the suppression of peptidoglycan biosynthesis as a trigger of spatial IMD rearrangement. Starved cells with a delocalized IMD can resume growth upon nutrient repletion, and polar enrichment of the IMD coincides with the initiation of cell elongation. These data reveal that the IMD is a membrane domain with the unprecedented capability of subcellular repositioning in response to the physiological conditions of the mycobacterial cell. IMPORTANCE Mycobacteria include medically important species, such as the human tuberculosis pathogen Mycobacterium tuberculosis. The highly impermeable cell envelope is a hallmark of these microbes, and its biosynthesis is a proven chemotherapeutic target. Despite the accumulating knowledge regarding the biosynthesis of individual envelope components, the regulatory mechanisms behind the coordinated synthesis of the complex cell envelope remain elusive. We previously reported the presence of a metabolically active membrane domain enriched in the elongating poles of actively growing mycobacteria. However, the spatiotemporal dynamics of the membrane domain in response to stress have not been examined. Here, we show that the membrane domain is spatially reorganized when growth is inhibited in the stationary growth phase, under nutrient starvation, or in response to perturbation of peptidoglycan biosynthesis. Our results suggest that mycobacteria have a mechanism to spatiotemporally coordinate the membrane domain in response to metabolic needs under different growth conditions. IMPORTANCE Mycobacteria include medically important species, such as the human tuberculosis pathogen Mycobacterium tuberculosis. The highly impermeable cell envelope is a hallmark of these microbes, and its biosynthesis is a proven chemotherapeutic target. Despite the accumulating knowledge regarding the biosynthesis of individual envelope components, the regulatory mechanisms behind the coordinated synthesis of the complex cell envelope remain elusive. We previously reported the presence of a metabolically active membrane domain enriched in the elongating poles of actively growing mycobacteria. However, the spatiotemporal dynamics of the membrane domain in response to stress have not been examined. Here, we show that the membrane domain is spatially reorganized when growth is inhibited in the stationary growth phase, under nutrient starvation, or in response to perturbation of peptidoglycan biosynthesis. Our results suggest that mycobacteria have a mechanism to spatiotemporally coordinate the membrane domain in response to metabolic needs under different growth conditions.