Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasu S. Morita is active.

Publication


Featured researches published by Yasu S. Morita.


Journal of Experimental Medicine | 2009

Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle

Eri Ishikawa; Tetsuaki Ishikawa; Yasu S. Morita; Kenji Toyonaga; Hisakata Yamada; Osamu Takeuchi; Taroh Kinoshita; Shizuo Akira; Yasunobu Yoshikai; Sho Yamasaki

Tuberculosis remains a fatal disease caused by Mycobacterium tuberculosis, which contains various unique components that affect the host immune system. Trehalose-6,6′-dimycolate (TDM; also called cord factor) is a mycobacterial cell wall glycolipid that is the most studied immunostimulatory component of M. tuberculosis. Despite five decades of research on TDM, its host receptor has not been clearly identified. Here, we demonstrate that macrophage inducible C-type lectin (Mincle) is an essential receptor for TDM. Heat-killed mycobacteria activated Mincle-expressing cells, but the activity was lost upon delipidation of the bacteria; analysis of the lipid extracts identified TDM as a Mincle ligand. TDM activated macrophages to produce inflammatory cytokines and nitric oxide, which are completely suppressed in Mincle-deficient macrophages. In vivo TDM administration induced a robust elevation of inflammatory cytokines in sera and characteristic lung inflammation, such as granuloma formation. However, no TDM-induced lung granuloma was formed in Mincle-deficient mice. Whole mycobacteria were able to activate macrophages even in MyD88-deficient background, but the activation was significantly diminished in Mincle/MyD88 double-deficient macrophages. These results demonstrate that Mincle is an essential receptor for the mycobacterial glycolipid, TDM.


Journal of Biological Chemistry | 2006

PimE Is a Polyprenol-phosphate-mannose-dependent Mannosyltransferase That Transfers the Fifth Mannose of Phosphatidylinositol Mannoside in Mycobacteria

Yasu S. Morita; Chubert B. C. Sena; Ross F. Waller; Ken Kurokawa; M. Fleur Sernee; Fumiki Nakatani; Ruth E. Haites; Helen Billman-Jacobe; Malcolm J. McConville; Yusuke Maeda; Taroh Kinoshita

Phosphatidylinositol mannosides (PIMs) are a major class of glycolipids in all mycobacteria. AcPIM2, a dimannosyl PIM, is both an end product and a precursor for polar PIMs, such as hexamannosyl PIM (AcPIM6) and the major cell wall lipoglycan, lipoarabinomannan (LAM). The mannosyltransferases that convert AcPIM2 to AcPIM6 or LAM are dependent on polyprenol-phosphate-mannose (PPM), but have not yet been characterized. Here, we identified a gene, termed pimE that is present in all mycobacteria, and is required for AcPIM6 biosynthesis. PimE was initially identified based on homology with eukaryotic PIG-M mannosyltransferases. PimE-deleted Mycobacterium smegmatis was defective in AcPIM6 synthesis, and accumulated the tetramannosyl PIM, AcPIM4. Loss of PimE had no affect on cell growth or viability, or the biosynthesis of other intracellular and cell wall glycans. However, changes in cell wall hydrophobicity and plasma membrane organization were detected, suggesting a role for AcPIM6 in the structural integrity of the cell wall and plasma membrane. These defects were corrected by ectopic expression of the pimE gene. Metabolic pulse-chase radiolabeling and cell-free PIM biosynthesis assays indicated that PimE catalyzes the α1,2-mannosyl transfer for the AcPIM5 synthesis. Mutation of an Asp residue in PimE that is conserved in and required for the activity of human PIG-M resulted in loss of PIM-biosynthetic activity, indicating that PimE is the catalytic component. Finally, PimE was localized to a distinct membrane fraction enriched in AcPIM4–6 biosynthesis. Taken together, PimE represents the first PPM-dependent mannosyl-transferase shown to be involved in PIM biosynthesis, where it mediates the fifth mannose transfer.


Biochemical Journal | 2004

Biosynthesis of mycobacterial phosphatidylinositol mannosides

Yasu S. Morita; John H. Patterson; Helen Billman-Jacobe; Malcolm J. McConville

All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and can also be hyperglycosylated to form other wall components, such as lipomannan and lipoarabinomannan. We have investigated the steps involved in the biosynthesis of the major PIM species in a new M. smegmatis cell-free system. A number of apolar and polar PIM intermediates were labelled when this system was continuously labelled or pulse-chase-labelled with GDP-[3H]Man, and the glycan head groups and the acylation states of these species were determined by chemical and enzymic treatments and octyl-Sepharose chromatography respectively. These analyses showed that (1) the major apolar PIM species, acyl-PIM2, can be synthesized by at least two pathways that differ in the timing of the first acylation step, (2) early PIM intermediates containing a single mannose residue can be modified with two fatty acid residues, (3) formation of polar PIM species from acyl-PIM2 is amphomycin-sensitive, indicating that polyprenol phosphate-Man, rather than GDP-Man, is the donor for these reactions, (4) modification of acylated PIM4 with alpha1-2- or alpha1-6-linked mannose residues is probably the branch point in the biosyntheses of polar PIM and lipoarabinomannan respectively and (5) GDP strongly inhibits the synthesis of early PIM intermediates and increases the turnover of polyprenol phosphate-Man. These findings are incorporated into a revised pathway for mycobacterial PIM biosynthesis.


Journal of Biological Chemistry | 2005

Compartmentalization of lipid biosynthesis in mycobacteria.

Yasu S. Morita; René Velasquez; Ellen Taig; Ross F. Waller; John H. Patterson; Dedreia Tull; Spencer J. Williams; Helen Billman-Jacobe; Malcolm J. McConville

The plasma membrane of Mycobacterium sp. is the site of synthesis of several distinct classes of lipids that are either retained in the membrane or exported to the overlying cell envelope. Here, we provide evidence that enzymes involved in the biosynthesis of two major lipid classes, the phosphatidylinositol mannosides (PIMs) and aminophospholipids, are compartmentalized within the plasma membrane. Enzymes involved in the synthesis of early PIM intermediates were localized to a membrane subdomain termed PMf, that was clearly resolved from the cell wall by isopyknic density centrifugation and amplified in rapidly dividing Mycobacterium smegmatis. In contrast, the major pool of apolar PIMs and enzymes involved in polar PIM biosynthesis were localized to a denser fraction that contained both plasma membrane and cell wall markers (PM-CW). Based on the resistance of the PIMs to solvent extraction in live but not lysed cells, we propose that polar PIM biosynthesis occurs in the plasma membrane rather than the cell wall component of the PM-CW. Enzymes involved in phosphatidylethanolamine biosynthesis also displayed a highly polarized distribution between the PMf and PM-CW fractions. The PMf was greatly reduced in non-dividing cells, concomitant with a reduction in the synthesis and steady-state levels of PIMs and amino-phospholipids and the redistribution of PMf marker enzymes to non-PM-CW fractions. The formation of the PMf and recruitment of enzymes to this domain may thus play a role in regulating growth-specific changes in the biosynthesis of membrane and cell wall lipids.


Journal of Biological Chemistry | 2006

Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria.

Svetozar Kovacevic; Dianne Anderson; Yasu S. Morita; John B. Patterson; Ruth E. Haites; Benjamin N. I. McMillan; Ross L. Coppel; Malcolm J. McConville; Helen Billman-Jacobe

All species of Mycobacteria synthesize distinctive cell walls that are rich in phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). PIM glycolipids, having 2–4 mannose residues, can either be channeled into polar PIM species (with 6 Man residues) or hypermannosylated to form LM and LAM. In this study, we have identified a Mycobacterium smegmatis gene, termed lpqW, that is required for the conversion of PIMs to LAM and is highly conserved in all mycobacteria. A transposon mutant, Myco481, containing an insertion near the 3′ end of lpqW exhibited altered colony morphology on complex agar medium. This mutant was unstable and was consistently overgrown by a second mutant, represented by Myco481.1, that had normal growth and colony characteristics. Biochemical analysis and metabolic labeling studies showed that Myco481 synthesized the complete spectrum of apolar and polar PIMs but was unable to make LAM. LAM biosynthesis was restored to near wild type levels in Myco481.1. However, this mutant was unable to synthesize the major polar PIM (AcPIM6) and accumulated a smaller intermediate, AcPIM4. Targeted disruption of the lpqW gene and complementation of the initial Myco481 mutant with the wild type gene confirmed that the phenotype of this mutant was due to loss of LpqW. These studies suggest that LpqW has a role in regulating the flux of early PIM intermediates into polar PIM or LAM biosynthesis. They also suggest that AcPIM4 is the likely branch point intermediate in polar PIM and LAM biosynthesis.


Mbio | 2013

Critical Roles for Lipomannan and Lipoarabinomannan in Cell Wall Integrity of Mycobacteria and Pathogenesis of Tuberculosis

Takeshi Fukuda; Takayuki Matsumura; Manabu Ato; Maho Hamasaki; Yukiko Nishiuchi; Yoshiko Murakami; Yusuke Maeda; Tamotsu Yoshimori; Sohkichi Matsumoto; Kazuo Kobayashi; Taroh Kinoshita; Yasu S. Morita

ABSTRACT Lipomannan (LM) and lipoarabinomannan (LAM) are mycobacterial glycolipids containing a long mannose polymer. While they are implicated in immune modulations, the significance of LM and LAM as structural components of the mycobacterial cell wall remains unknown. We have previously reported that a branch-forming mannosyltransferase plays a critical role in controlling the sizes of LM and LAM and that deletion or overexpression of this enzyme results in gross changes in LM/LAM structures. Here, we show that such changes in LM/LAM structures have a significant impact on the cell wall integrity of mycobacteria. In Mycobacterium smegmatis, structural defects in LM and LAM resulted in loss of acid-fast staining, increased sensitivity to β-lactam antibiotics, and faster killing by THP-1 macrophages. Furthermore, equivalent Mycobacterium tuberculosis mutants became more sensitive to β-lactams, and one mutant showed attenuated virulence in mice. Our results revealed previously unknown structural roles for LM and LAM and further demonstrated that they are important for the pathogenesis of tuberculosis. IMPORTANCE Tuberculosis (TB) is a global burden, affecting millions of people worldwide. Mycobacterium tuberculosis is a causative agent of TB, and understanding the biology of M. tuberculosis is essential for tackling this devastating disease. The cell wall of M. tuberculosis is highly impermeable and plays a protective role in establishing infection. Among the cell wall components, LM and LAM are major glycolipids found in all Mycobacterium species, show various immunomodulatory activities, and have been thought to play roles in TB pathogenesis. However, the roles of LM and LAM as integral parts of the cell wall structure have not been elucidated. Here we show that LM and LAM play critical roles in the integrity of mycobacterial cell wall and the pathogenesis of TB. These findings will now allow us to seek the possibility that the LM/LAM biosynthetic pathway is a chemotherapeutic target. Tuberculosis (TB) is a global burden, affecting millions of people worldwide. Mycobacterium tuberculosis is a causative agent of TB, and understanding the biology of M. tuberculosis is essential for tackling this devastating disease. The cell wall of M. tuberculosis is highly impermeable and plays a protective role in establishing infection. Among the cell wall components, LM and LAM are major glycolipids found in all Mycobacterium species, show various immunomodulatory activities, and have been thought to play roles in TB pathogenesis. However, the roles of LM and LAM as integral parts of the cell wall structure have not been elucidated. Here we show that LM and LAM play critical roles in the integrity of mycobacterial cell wall and the pathogenesis of TB. These findings will now allow us to seek the possibility that the LM/LAM biosynthetic pathway is a chemotherapeutic target.


Biochimica et Biophysica Acta | 2011

Inositol lipid metabolism in mycobacteria: biosynthesis and regulatory mechanisms.

Yasu S. Morita; Takeshi Fukuda; Chubert B. C. Sena; Yoshiki Yamaryo-Botté; Malcolm J. McConville; Taroh Kinoshita

BACKGROUND The genus Mycobacterium includes a number of medically important pathogens. The cell walls of these bacteria have many unique features, including the abundance of various inositol lipids, such as phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). The biosynthesis of these lipids is believed to be prime drug targets, and has been clarified in detail over the past several years. SCOPE OF REVIEW Here we summarize our current understanding of the inositol lipid metabolism in mycobacteria. We will highlight unsolved issues and future directions especially in the context of metabolic regulation. MAJOR CONCLUSIONS Inositol is a building block of phosphatidylinositol (PI), which is further elaborated to become PIMs, LM and LAM. d-myo-inositol 3-phosphate is an intermediate of the de novo inositol synthesis, but it is also the starting substrate for mycothiol synthesis. Controlling the level of d-myo-inositol 3-phosphate appears to be important for maintaining the steady state levels of mycothiol and inositol lipids. Several additional control mechanisms must exist to control the complex biosynthetic pathways of PI, PIMs, LM and LAM. These may include regulatory proteins such as a lipoprotein LpqW, and spatial separation of enzymes, such as the amphipathic PimA mannosyltransferase and later enzymes in the PIMs/LM biosynthetic pathway. Finally, we discuss mechanisms that underlie control of LM/LAM glycan polymer elongation. GENERAL SIGNIFICANCE Mycobacteria have evolved a complex network of inositol metabolism. Clarifying its metabolism will not only provide better understanding of bacterial pathogenesis, but also understanding of the evolution and general functions of inositol lipids in nature.


Journal of Bacteriology | 2008

Mutations in pimE Restore Lipoarabinomannan Synthesis and Growth in a Mycobacterium smegmatis lpqW Mutant

Paul K. Crellin; Svetozar Kovacevic; Kirstee L. Martin; Rajini Brammananth; Yasu S. Morita; Helen Billman-Jacobe; Malcolm J. McConville; Ross L. Coppel

Lipoarabinomannans (LAMs) and phosphatidylinositol mannosides (PIMs) are abundant glycolipids in the cell walls of all corynebacteria and mycobacteria, including the devastating human pathogen Mycobacterium tuberculosis. We have recently shown that M. smegmatis mutants of the lipoprotein-encoding lpqW gene have a profound defect in LAM biosynthesis. When these mutants are cultured in complex medium, spontaneous bypass mutants consistently evolve in which LAM biosynthesis is restored at the expense of polar PIM synthesis. Here we show that restoration of LAM biosynthesis in the lpqW mutant results from secondary mutations in the pimE gene. PimE is a mannosyltransferase involved in converting AcPIM4, a proposed branch point intermediate in the PIM and LAM biosynthetic pathways, to more polar PIMs. Mutations in pimE arose due to insertion of the mobile genetic element ISMsm1 and independent point mutations that were clustered in predicted extracytoplasmic loops of this polytopic membrane protein. Our findings provide the first strong evidence that LpqW is required to channel intermediates such as AcPIM4 into LAM synthesis and that loss of PimE function results in the accumulation of AcPIM4, bypassing the need for LpqW. These data highlight new mechanisms regulating the biosynthetic pathways of these essential cell wall components.


Journal of Biological Chemistry | 2010

Controlled Expression of Branch-forming Mannosyltransferase Is Critical for Mycobacterial Lipoarabinomannan Biosynthesis

Chubert B. C. Sena; Takeshi Fukuda; Kana Miyanagi; Sohkichi Matsumoto; Kazuo Kobayashi; Yoshiko Murakami; Yusuke Maeda; Taroh Kinoshita; Yasu S. Morita

Lipomannan (LM) and lipoarabinomannan (LAM) are phosphatidylinositol-anchored glycans present in the mycobacterial cell wall. In Mycobacterium smegmatis, the mannan core of LM/LAM constitutes a linear chain of 20–25 α1,6-mannoses elaborated by 8–9 α1,2-monomannose side branches. At least two α1,6-mannosyltransferases mediate the linear mannose chain elongation, and one branching α1,2-mannosyltransferase (encoded by MSMEG_4247) transfers monomannose branches. An MSMEG_4247 deletion mutant accumulates branchless LAM and interestingly fails to accumulate LM, suggesting an unexpected role of mannose branching for LM synthesis or maintenance. To understand the roles of MSMEG_4247-mediated branching more clearly, we analyzed the MSMEG_4247 deletion mutant in detail. Our study showed that the deletion mutant restored the synthesis of wild-type LM and LAM upon the expression of MSMEG_4247 at wild-type levels. In striking contrast, overexpression of MSMEG_4247 resulted in the accumulation of dwarfed LM/LAM, although monomannose branching was restored. The dwarfed LAM carried a mannan chain less than half the length of wild-type LAM and was elaborated by an arabinan that was about 4 times smaller. Induced overexpression of an elongating α1,6-mannosyltransferase competed with the overexpressed branching enzyme, alleviating the dwarfing effect of the branching enzyme. In wild-type cells, LM and LAM decreased in quantity in the stationary phase, and the expression levels of branching and elongating mannosyltransferases were reduced in concert, presumably to avoid producing abnormal LM/LAM. These data suggest that the coordinated expressions of branching and elongating mannosyltransferases are critical for mannan backbone elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Spatially distinct and metabolically active membrane domain in mycobacteria

Jennifer M. Hayashi; Chu Yuan Luo; Jacob A. Mayfield; Tsungda Hsu; Takeshi Fukuda; Andrew L. Walfield; Samantha R. Giffen; John D. Leszyk; Christina E. Baer; Owen T. Bennion; Ashoka V. R. Madduri; Scott A. Shaffer; Bree B. Aldridge; Christopher M. Sassetti; Steven J. Sandler; Taroh Kinoshita; D. Branch Moody; Yasu S. Morita

Significance Mycobacterium is a family of bacteria that includes a number of dangerous pathogens. Arresting the growth of mycobacteria may be possible through the disruption of control points that regulate cell envelope biosynthesis. We demonstrate that Mycobacterium smegmatis possesses a spatially distinct biosynthetic membrane domain enriched in the polar growth region of the cell. This membrane domain may act as an organizing center to spatiotemporally coordinate biosynthetic activities during growth in live cells. Thus, our findings provide an important insight into the potential regulatory mechanisms of lipid metabolism in mycobacteria. Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis.

Collaboration


Dive into the Yasu S. Morita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Sloan Siegrist

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alam García-Heredia

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Emily S. Melzer

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge