M. Stella Grando
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Stella Grando.
BMC Plant Biology | 2013
Francesco Emanuelli; Silvia Lorenzi; Lukasz Grzeskowiak; Valentina Catalano; Marco Stefanini; Michela Troggio; Sean Myles; José M. Martínez-Zapater; Eva Zyprian; Flavia Maia Moreira; M. Stella Grando
BackgroundThe economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples.ResultsWe investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability.ConclusionsThe comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use.
Genetics | 2007
Michela Troggio; Giulia Malacarne; Giuseppina Coppola; Cinzia Segala; Dustin Cartwright; Massimo Pindo; Marco Stefanini; Rolf Mank; Marco Moroldo; Michele Morgante; M. Stella Grando; Riccardo Velasco
The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F1 individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.
Molecular Breeding | 2004
Marzia Salmaso; Giorgia Faes; Cinzia Segala; Marco Stefanini; Ilkhom Salakhutdinov; Eva Zyprian; Reinhard Toepfer; M. Stella Grando; Riccardo Velasco
EST (expressed sequence tags) sequencing, SNP (single nucleotide polymorphisms) development and haplotype assessment are powerful tools for the support of marker-assisted selection. The grapevine genome is currently being scavenged in our laboratory using an EST-SNP approach. Nine parental genotypes, used to create five inter- or intra-specific hybrids, have been tested to evaluate the degree of polymorphism between Vitis vinifera, Vitis riparia and a further intraspecific hybrid, measuring their nucleotide diversity. The SNPs were analysed on cDNA sequences of 4 functional classes of genes based on homology with genes present in a public database: sugar metabolism, cell signalling, anthocyanin metabolism and defence related. Primer pairs were deduced and used to amplify corresponding genomic sequences. Almost 12,000 bp of DNA have been scanned revealing differences among genotypes of up to 247 SNPs, with the highest rate of one SNP occurring every 78 bp when clones of different Vitis species are compared. Re-sequencing allowed the definition of haplotypes in the nine genotypes studied and these were confirmed by analysing segregating populations. The efficiency of SSCP, in comparison with re-sequencing, was considered for 25 gene fragments of the same 9 genotypes.
Molecular Biotechnology | 2014
Rezq Basheer-Salimia; Silvia Lorenzi; Fadi Batarseh; Paula Moreno-Sanz; Francesco Emanuelli; M. Stella Grando
Palestine has a wide range of agro-ecological concerns and hosts a large variety of plants. Grapes are part of the cultural heritage and provide an indispensable food ingredient. Local cultivars have been traditionally identified on the basis of morphological traits, geographical origin, or names of the vineyard owner; therefore, the occurrence of homonymy, synonymy, and misnaming significantly prevents their valorization. DNA profiling by 22 common SSR markers was used to characterize 43 putative cultivars grown mainly for local table grape consumption at the southern highland regions of West-Bank, to further evaluate genetic diversity and relationships of the population. Consistent matching of SSR markers with grapevines cultivated in neighboring countries or maintained in European germplasm collections was found for 8 of the 21 different non-redundant genotypes discovered, suggesting possible synonyms as well as the occurrence of breeding selections formerly developed in the USA. Genetic relationships inferred from SSR markers clearly assigned Palestinian cultivars to the Proles orientalis subpr. Antasiatica ancestral population, and they even remarked the connection between local resources and cultivars generated from international table grape breeding. This study supports the value of collection and conservation of vines endemic to a region of immense historical importance for viticulture.
Horticulture research | 2018
Annarita Marrano; Diego Micheletti; Silvia Lorenzi; David B. Neale; M. Stella Grando
The application of population genetic methods in combination with gene mapping strategies can help to identify genes and mutations selected during the evolution from wild plants to crops and to explore the considerable genetic variation still maintained in natural populations. We genotyped a grapevine germplasm collection of 44 wild (Vitis vinifera subsp. sylvestris) and 48 cultivated (V. vinifera subsp. sativa) accessions at 54 K single-nucleotide polymorphisms (SNPs) to perform a whole-genome comparison of the main population genetic statistics. The analysis of Wright Fixation Index (FST) along the whole genome allowed us to identify several putative “signatures of selection” spanning over two thousand SNPs significantly differentiated between sativa and sylvestris. Many of these genomic regions included genes involved in the adaptation to environmental changes. An overall reduction of nucleotide diversity was observed across the whole genome within sylvestris, supporting a small effective population size of the wild grapevine. Tajima’s D resulted positive in both wild and cultivated subgroups, which may indicate an ongoing balancing selection. Association mapping for six domestication-related traits was performed in combination with population genetics, providing further evidence of different perception and response to environmental stresses between sativa and sylvestris.Grapes: Wild and cultivated grapevines adapted to different stressesWild and domesticated grapevine populations display genomic differences that likely arose as a result of evolutionary responses to different environmental pressures. Annarita Marrano of the Edmund Mach Foundation in San Michele All’adige, Italy, and colleagues characterized the genetic diversity found in 44 wild and 48 cultivated accessions of the Eurasian wine grape, Vitis vinifera. They analyzed 54,000 single DNA letters spread across the genome and found evidence that natural wild grapevine populations are on the decline. They also identified several genomic regions related to stress responses that evolved differently in grapes bred to live in vineyards and their wild relatives. The findings suggest the need to conserve wild grapevines, which may harbor genes encoding resilience factors that could aid in the development of hardier wine-producing crops in the future.
Frontiers in Plant Science | 2018
Lorenza Dalla Costa; Francesco Emanuelli; M. Trenti; Paula Moreno-Sanz; Silvia Lorenzi; Emanuela Coller; Sergio Moser; Davide Slaghenaufi; Alessandro Cestaro; Roberto Larcher; Ivana Gribaudo; Laura Costantini; Mickael Malnoy; M. Stella Grando
Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.
Theoretical and Applied Genetics | 2008
Silvia Vezzulli; Michela Troggio; Giuseppina Coppola; Angelica Jermakow; Dustin Cartwright; Andrey Zharkikh; Marco Stefanini; M. Stella Grando; Roberto Viola; Anne-Françoise Adam-Blondon; Mark R. Thomas; Patrice This; Riccardo Velasco
Theoretical and Applied Genetics | 2009
Juri Battilana; Laura Costantini; Francesco Emanuelli; Federica Sevini; Cinzia Segala; Sergio Moser; Riccardo Velasco; Giuseppe Versini; M. Stella Grando
Theoretical and Applied Genetics | 2008
Marzia Salmaso; Giulia Malacarne; Michela Troggio; Giorgia Faes; Marco Stefanini; M. Stella Grando; Riccardo Velasco
Tree Genetics & Genomes | 2011
Flavia Maia Moreira; Alberto Madini; Rosanna Marino; Luca Zulini; Marco Stefanini; Riccardo Velasco; Pal Kozma; M. Stella Grando