Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesco Emanuelli is active.

Publication


Featured researches published by Francesco Emanuelli.


BMC Plant Biology | 2013

Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

Francesco Emanuelli; Silvia Lorenzi; Lukasz Grzeskowiak; Valentina Catalano; Marco Stefanini; Michela Troggio; Sean Myles; José M. Martínez-Zapater; Eva Zyprian; Flavia Maia Moreira; M. Stella Grando

BackgroundThe economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples.ResultsWe investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability.ConclusionsThe comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use.


BMC Plant Biology | 2010

A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.)

Francesco Emanuelli; Juri Battilana; Laura Costantini; Loïc Le Cunff; Jean-Michel Boursiquot; Patrice This; Maria Stella Grando

BackgroundThe sweet, floral flavor typical of Muscat varieties (Muscats), due to high levels of monoterpenoids (geraniol, linalool and nerol), is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L.) has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) with the major QTL positioned on chromosome 5.ResultsWe resequenced VvDXS in an ad hoc association population of 148 grape varieties, which included muscat-flavored, aromatic and neutral accessions as well as muscat-like aromatic mutants and non-aromatic offsprings of Muscats. Gene nucleotide diversity and intragenic linkage disequilibrium (LD) were evaluated. Structured association analysis revealed three SNPs in moderate LD to be significantly associated with muscat-flavored varieties. We identified a putative causal SNP responsible for a predicted non-neutral substitution and we discuss its possible implications for flavor metabolism. Network analysis revealed a major star-shaped cluster of reconstructed haplotypes unique to muscat-flavored varieties. Moreover, muscat-like aromatic mutants displayed unique non-synonymous mutations near the mutated site of Muscat genotypes.ConclusionsThis study is a crucial step forward in understanding the genetic regulation of muscat flavor in grapevine and it also sheds light on the domestication history of Muscats. VvDXS appears to be a possible human-selected locus in grapevine domestication and post-domestication. The putative causal SNP identified in Muscat varieties as well as the unique mutations identifying the muscat-like aromatic mutants under study may be immediately applied in marker-assisted breeding programs aimed at enhancing fragrance and aroma complexity respectively in table grape and wine cultivars.


Journal of Experimental Botany | 2011

Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation

Juri Battilana; Francesco Emanuelli; Giorgio Gambino; Ivana Gribaudo; Flavia Gasperi; Paul K. Boss; Maria Stella Grando

Grape berries of Muscat cultivars (Vitis vinifera L.) contain high levels of monoterpenols and exhibit a distinct aroma related to this composition of volatiles. A structural gene of the plastidial methyl-erythritol-phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS), was recently suggested as a candidate gene for this trait, having been co-localized with a major quantitative trait locus for linalool, nerol, and geraniol concentrations in berries. In addition, a structured association study discovered a putative causal single nucleotide polymorphism (SNP) responsible for the substitution of a lysine with an asparagine at position 284 of the VvDXS protein, and this SNP was significantly associated with Muscat-flavoured varieties. The significance of this nucleotide difference was investigated by comparing the monoterpene profiles with the expression of VvDXS alleles throughout berry development in Moscato Bianco, a cultivar heterozygous for the SNP mutation. Although correlation was detected between the VvDXS transcript profile and the accumulation of free monoterpenol odorants, the modulation of VvDXS expression during berry development appears to be independent of nucleotide variation in the coding sequence. In order to assess how the non-synonymous mutation may enhance Muscat flavour, an in vitro characterization of enzyme isoforms was performed followed by in vivo overexpression of each VvDXS allele in tobacco. The results showed that the amino acid non-neutral substitution influences the enzyme kinetics by increasing the catalytic efficiency and also dramatically affects monoterpene levels in transgenic lines. These findings confirm a functional effect of the VvDXS gene polymorphism and may pave the way for metabolic engineering of terpenoid contents in grapevine.


Molecular Biotechnology | 2014

Molecular Identification and Genetic Relationships of Palestinian Grapevine Cultivars

Rezq Basheer-Salimia; Silvia Lorenzi; Fadi Batarseh; Paula Moreno-Sanz; Francesco Emanuelli; M. Stella Grando

Palestine has a wide range of agro-ecological concerns and hosts a large variety of plants. Grapes are part of the cultural heritage and provide an indispensable food ingredient. Local cultivars have been traditionally identified on the basis of morphological traits, geographical origin, or names of the vineyard owner; therefore, the occurrence of homonymy, synonymy, and misnaming significantly prevents their valorization. DNA profiling by 22 common SSR markers was used to characterize 43 putative cultivars grown mainly for local table grape consumption at the southern highland regions of West-Bank, to further evaluate genetic diversity and relationships of the population. Consistent matching of SSR markers with grapevines cultivated in neighboring countries or maintained in European germplasm collections was found for 8 of the 21 different non-redundant genotypes discovered, suggesting possible synonyms as well as the occurrence of breeding selections formerly developed in the USA. Genetic relationships inferred from SSR markers clearly assigned Palestinian cultivars to the Proles orientalis subpr. Antasiatica ancestral population, and they even remarked the connection between local resources and cultivars generated from international table grape breeding. This study supports the value of collection and conservation of vines endemic to a region of immense historical importance for viticulture.


Frontiers in Plant Science | 2017

Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco (Vitis vinifera L.)

Laura Costantini; Christian Kappel; M. Trenti; Juri Battilana; Francesco Emanuelli; Maddalena Sordo; Marco Moretto; Céline Camps; Roberto Larcher; Serge Delrot; Maria Stella Grando

Monoterpenes confer typical floral notes to “Muscat” grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle-mediated regulation with supporting evidence from the literature and additional regulatory genes with a previously unreported association to monoterpene accumulation).


Frontiers in Plant Science | 2018

Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles

Lorenza Dalla Costa; Francesco Emanuelli; M. Trenti; Paula Moreno-Sanz; Silvia Lorenzi; Emanuela Coller; Sergio Moser; Davide Slaghenaufi; Alessandro Cestaro; Roberto Larcher; Ivana Gribaudo; Laura Costantini; Mickael Malnoy; M. Stella Grando

Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.


Theoretical and Applied Genetics | 2009

The 1-deoxy- d -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine

Juri Battilana; Laura Costantini; Francesco Emanuelli; Federica Sevini; Cinzia Segala; Sergio Moser; Riccardo Velasco; Giuseppe Versini; M. Stella Grando


Molecular Biotechnology | 2013

Linkage Mapping and Molecular Diversity at the Flower Sex Locus in Wild and Cultivated Grapevine Reveal a Prominent SSR Haplotype in Hermaphrodite Plants

Juri Battilana; Silvia Lorenzi; Flavia Maia Moreira; Paula Moreno-Sanz; Osvaldo Failla; Francesco Emanuelli; M. Stella Grando


Breeding for Fruit Quality | 2011

Molecular breeding of grapevine for aromatic quality and other traits relevant to viticulture

Francesco Emanuelli; Juri Battilana; Laura Costantini; M. Stella Grando


Acta Horticulturae | 2017

Metabolic engineering of volatile isoprenoids in grapevine

L. Dalla Costa; Francesco Emanuelli; M. Trenti; Silvia Lorenzi; Luca Cappellin; F. Biasioli; Mickael Malnoy; M.S. Grando

Collaboration


Dive into the Francesco Emanuelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Stella Grando

Universidade Federal de Santa Catarina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrice This

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge