E. van Heugten
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. van Heugten.
Journal of Animal Science | 2010
Sung Woo Kim; E. van Heugten; F. Ji; C. H. Lee; R. D. Mateo
Four experiments were conducted using 671 nursery pigs to evaluate fermented soybean meal (FSBM) as a new vegetable protein source for nursery pigs. In Exp. 1, a total of 192 pigs weaned at 19.2 +/- 0.3 d of age were fed 3 diets (8 pens per treatment) for 2 wk: a control diet (without FSBM) and 2 diets with 3 and 6% FSBM replacing soybean meal, followed by a common diet for the next 2 wk. In Exp. 2, a total of 160 pigs weaned at 21.6 +/- 0.2 d of age were fed 4 diets (5 pens per treatment) for 2 wk: a control diet (without FSBM but with 25% dried skim milk; DSM) and 3 diets with 3, 6, and 9% FSBM replacing DSM based on CP. Concentrations of CP, Lys, Met, Thr, and Trp were kept consistent among diets in Exp. 1 and 2. In Exp. 3, a total of 144 pigs weaned at 22.1 +/- 0.2 d of age were fed 3 diets (6 pens per treatment) for 2 wk: a control diet (without FSBM but with 40% DSM) and 2 diets with 5 and 10% FSBM replacing DSM based on CP. Concentrations of CP, Lys, Met, Thr, Trp, and lactose were kept consistent among diets. In Exp. 4, a total of 175 pigs weaned at 20.7 +/- 0.4 d of age were fed 5 diets (5 pens per treatment) for 3 wk: a basal diet [15.5% CP without plasma protein (PP) and FSBM], 2 diets (18.4% CP) with 3.7% PP or 4.9% FSBM, and 2 diets (21.2% CP) with 7.3% PP or 9.8% FSBM. Concentrations of Lys, Met, Thr, and Trp were kept consistent among diets with the same CP concentrations. Pigs had access to feed and water ad libitum and their BW and feed intake were measured weekly for all experiments. Use of up to 6% FSBM replacing soybean meal improved (P < 0.05) G:F and diarrhea scores of nursery pigs (Exp. 1). Use of up to 9% FSBM replacing DSM reduced (P < 0.05) ADG and G:F (Exp. 2). When lactose concentrations were equal, FSBM could replace up to 10% DSM without adverse effects on ADG and G:F (Exp. 3). Relative bioavailability of protein in FSBM to PP was 99.1% (Exp. 4). Collectively, FSBM can serve as an alternative protein source for nursery pigs at 3 to 7 wk of age, possibly replacing the use of DSM and PP but excluding the first week postweaning for PP when balancing for AA and lactose.
Journal of Animal Science | 2010
B. S. Seabolt; E. van Heugten; Sung Woo Kim; K. D. Ange-van Heugten; E. Roura
We evaluated the preferences of nursery pigs for diets containing increasing distillers dried grains with solubles (DDGS), varying in color, or high-protein distillers dried grains (HP-DDG) and the effects of flavor supplementation on pig preference and growth performance. In Exp. 1 through 5, diet preference was determined in weanling pigs adjusted to a commercial diet for at least 10 d, and then housed individually for a 2-d double-choice preference test. In Exp. 1, a total of 60 pigs (11.6 ± 0.3 kg of BW) were given a choice between a reference diet (0% DDGS) and test diets containing 0, 10, 20, or 30% DDGS. In Exp. 2, a total of 80 pigs (10.8 ± 0.1 kg of BW) were given a choice between a reference diet (0% HP-DDG) and diets containing 0, 10, 20, or 30% HP-DDG. In Exp. 3, a total of 80 pigs (10.3 ± 0.2 kg of BW) were given a choice between a reference diet (0% DDGS) and a diet containing 0%, 30% light, or 30% dark DDGS. In Exp. 4, a total of 80 pigs (11.2 ± 0.2 kg of BW) were given a choice between a reference diet without DDGS and a diet containing either 0% DDGS, 10 or 20% light DDGS, or 10 or 20% dark DDGS. In Exp. 5, a total of 108 pigs (9.0 ± 0.2 kg of BW) were given a choice between a reference diet (0% DDGS and no flavor) and a diet without or with flavor and containing 0, 10, or 20% DDGS. In Exp. 1 and 2, DDGS and HP-DDG, respectively, linearly decreased (P < 0.01) pig preference. In Exp. 3, dark DDGS were preferred (P < 0.05) compared with light DDGS. In Exp. 4, preferences were linearly reduced (P < 0.01) with DDGS inclusion, and dark DDGS tended (P = 0.06) to be preferred compared with light DDGS. In Exp. 5, DDGS reduced preference (P < 0.01) and flavor reduced preference (P < 0.01) regardless of DDGS level. In Exp. 6, a total of 192 pigs (6.7 ± 0.1 kg of BW) were fed starter 1 diets without or with flavor for 1 wk. Subsequently, pigs were fed starter 2 and 3 diets (2 wk each) containing 0, 10, or 20% DDGS while continuing to receive their respective flavor treatment. Flavor addition during the starter 1 phase increased ADFI (P = 0.02), and DDGS inclusion tended to decrease ADG (P = 0.06) and decreased ADFI (P = 0.03) during the starter 2 phase. Volatile components in DDGS and HP-DDG varied greatly depending on the source. Nursery pigs preferred a diet without DDGS or HP-DDG, and this appeared to be unrelated to color differences between sources. Knowledge of volatile compounds that enhance or suppress the palatability of feed may lead to further development of feed additives for masking relatively unpalatable, albeit cost-effective, ingredients.
Journal of Animal Science | 2011
M. C. Shields; E. van Heugten; X. Lin; Jack Odle; C.S. Stark
In Exp. 1, a total of 144 pigs (BW, 6.68 ± 0.17 kg) were weaned at 21 d, blocked by BW, and allocated to 48 pens with 3 pigs per pen. Pens were randomly assigned to 1 of 6 dietary treatments (0, 2.5, 5, 7.5, and 10% glycerol supplemented to replace up to 10% lactose in a basal starter 1 diet containing 20% total lactose, which was fed for 2 wk), and a negative control diet with 10% lactose and 0% glycerol. A common starter diet was fed for the next 2 wk. In Exp. 2, a total of 126 pigs (BW, 6.91 ± 0.18 kg) were weaned at 21 d of age, blocked by BW, and allocated to 42 pens with 3 pigs per pen. Pigs were assigned to 1 of 6 treatments in a 2 × 3 factorial arrangement in a randomized complete block design with factors being 1) glycerol inclusion in replacement of lactose in starter 1 diets (0 or 5%) fed for 2 wk, and 2) glycerol inclusion in starter 2 diets (0, 5, or 10%) fed for 3 wk. In Exp. 1, glycerol supplementation at 10% improved (P=0.01) ADG (266 vs. 191 g/d) and G:F (871 vs. 679 g/kg) during the starter 1 period when compared with the negative control. Incremental amounts of glycerol linearly (P<0.05) increased ADG and ADFI, but did not affect G:F during starter 1. There was no effect of feeding glycerol during the starter 1 phase on subsequent performance during the starter 2 phase or overall. Serum glycerol concentrations increased linearly (P=0.003) with increasing dietary glycerol, and serum creatinine (P=0.004) and bilirubin (P=0.03) concentrations decreased with increasing glycerol. In Exp. 2, glycerol did not affect performance during starter 1, but it linearly increased (P≤0.01) ADG and ADFI during starter 2 (464, 509, and 542 and 726, 822, and 832 g/d, respectively) and overall (368, 396, and 411 and 546, 601, and 609 g/d, respectively). At the end of the study, pigs were 1.0 and 1.5 kg heavier when fed 5 and 10% glycerol, respectively (linear, P<0.01). Serum glycerol concentrations increased linearly during starter 2 (P<0.001), but were not affected during starter 1. Glycerol supplementation increased serum urea N quadratically (P<0.001) and decreased creatinine linearly (P<0.05) in the starter 2 phase. Overall, data indicate that glycerol can be added to nursery pig diets at 10%, while improving growth performance.
Journal of Animal Science | 2012
D. S. Rosero; E. van Heugten; Jack Odle; Rafael A Cabrera; C. Arellano; R. D. Boyd
The objective of this experiment was to determine the impact of supplemental dietary fat on total lactation energy intake and sow and litter performance during high ambient temperatures (27 ± 3°C). Data were collected from 337 mixed-parity sows from July to September in a 2,600-sow commercial unit in Oklahoma. Diets were corn-soybean meal-based with 7.5% corn distillers dried grains with solubles and 6.0% wheat middlings and contained 3.24 g of standardized ileal digestible Lys/Mcal of ME. Animal-vegetable fat blend (A-V) was supplemented at 0, 2, 4, or 6%. Sows were balanced by parity, with 113, 109, and 115 sows representing parity 1, 2, and 3 to 7 (P3+), respectively. Feed disappearance (subset of 190 sows; 4.08, 4.18, 4.44, and 4.34 kg/d, for 0, 2, 4, and 6%, respectively; P < 0.05) and apparent caloric intake (12.83, 13.54, 14.78, and 14.89 Mcal of ME/d, respectively; P < 0.001) increased linearly with increasing dietary fat. Gain:feed (sow and litter BW gain relative to feed intake) was not affected (P = 0.56), but gain:Mcal ME declined linearly with the addition of A-V (0.16, 0.15, 0.15, and 0.14 for 0, 2, 4, and 6%, respectively; P < 0.01). Parity 1 sows (3.95 kg/d) had less (P < 0.05) feed disappearance than P2 (4.48 kg/d) and P3+ (4.34 kg/d) sows. Body weight change in P1 sows was greater (P < 0.01) than either P2 or P3+ sows (-0.32 vs. -0.07 and 0.12 kg/d), whereas backfat loss was less (P < 0.05) and loin depth gain was greater (P < 0.05) in P3+ sows compared with P1 and P2 sows. Dietary A-V improved litter ADG (P < 0.05; 1.95, 2.13, 2.07, and 2.31 kg/d for 0, 2, 4, and 6% fat, respectively) only in P3+ sows. Sows bred within 8 d after weaning (58.3, 72.0, 70.2, and 74.7% for 0, 2, 4, and 6%, respectively); conception rate (78.5, 89.5, 89.2, and 85.7%) and farrowing rate (71.4, 81.4, 85.5, and 78.6%) were improved (P < 0.01) by additional A-V, but weaning-to-breeding interval was not affected. Rectal and skin temperature and respiration rate of sows were greater (P < 0.002) when measured at wk 3 compared with wk 1 of lactation, but were not affected by A-V addition. Parity 3+ sows had lower (P < 0.05) rectal temperature than P1 and P2 sows, and respiration rate was reduced (P < 0.001) in P1 sows compared with P2 and P3+ sows. In conclusion, A-V improved feed disappearance and caloric intake, resulting in improved litter weight gain and subsequent reproductive performance of sows; however, feed and caloric efficiency were negatively affected.
Folia Microbiologica | 2011
Alexandria K. Graves; L. Liwimbi; D. W. Israel; E. van Heugten; B. Robinson; C. W. Cahoon; J. F. Lubbers
The prevalence of ten antibiotic resistance genes (ARGs) was evaluated in a total of 616 Escherichia coli isolates from swine manure, swine lagoon effluent, and from soils that received lagoon effluent on a commercial swine farm site in Sampson County, North Carolina (USA). Isolates with ARGs coding for streptomycin/spectinomycin (aadA/strA and strB), tetracycline (tetA and tetB), and sulfonamide (sul1) occurred most frequently (60.6–91.3%). The occurrence of E. coli isolates that carried aadA, tetA, tetB, and tetC genes was significantly more frequent in soil samples (34.0–97.2%) than in isolates from lagoon samples (20.9–90.6%). Furthermore, the frequency of isolates that contain genes coding for aadA and tetB was significantly greater in soil samples (82.6–97.2%) when compared to swine manure (16.8–86.1%). Isolates from the lagoon that carried tetA, tetC, and sul3 genes were significantly more prevalent during spring (63.3–96.7%) than during winter (13.1–67.8%). The prevalence of isolates from the lagoon that possessed the strA, strB, and sul1 resistance genes was significantly more frequent during the summer (90.0–100%) than during spring (66.6–80.0%). The data suggest that conditions in the lagoon, soil, and manure may have an impact on the occurrence of E. coli isolates with specific ARGs. Seasonal variables seem to impact the recovery isolates with ARGs; however, ARG distribution may be associated with mobile genetic elements or a reflection of the initial numbers of resistant isolates shed by the animals.
International Journal of Zoology | 2009
K. D. Ange-van Heugten; E. van Heugten; S. Timmer; Guido Bosch; A. Elias; S. Whisnant; H. J. M. Swarts; P. R. Ferket; M.W.A. Verstegen
Detrimental physiological effects due to stressors can contribute to the low captive success of primates. The objective of this research was to investigate the potential impact of diet composition on cortisol concentrations in feces and saliva in woolly () and spider monkeys (). The research was conducted in three studies: the first investigated spider monkeys in the United States, the second investigated spider monkeys within Europe, and the third investigated woolly monkeys within Europe. Fecal cortisol in spider monkeys in US zoos varied () from 30 to 66 ng/g. The zoo with the highest fecal cortisol also had the highest salivary cortisol (). For European zoos, fecal cortisol differed between zoos for both spider and woolly monkeys (). Spider monkeys had higher fecal cortisol than woolly monkeys (). Zoos with the highest dietary carbohydrates, sugars, glucose, and fruit had the highest cortisol. Cortisol was highest for zoos that did not meet crude protein requirements and fed the lowest percentage of complete feeds and crude fiber. Differences among zoos in housing and diets may increase animal stress. The lifespan and reproductive success of captive primates could improve if stressors are reduced and dietary nutrients optimized.
Journal of Animal Science | 2014
S. M. Mendoza; E. van Heugten
Acidulated fats and oils are by-products of the fat-refining industry. They contain high levels of FFA and are 10% to 20% less expensive than refined fats and oils. Two studies were designed to measure the effects of dietary lipid sources low or high in FFA on growth performance and apparent total tract digestibility (ATTD) of lipids and GE in nursery pigs. In Exp. 1, 189 pigs at 14 d postweaning (BW of 9.32 ± 0.11 kg) were used for 21 d with 9 replicate pens per treatment and 3 pigs per pen. Dietary treatments consisted of a control diet without added lipids and 6 diets with 6% inclusion of lipids. Four lipid sources were combined to create the dietary treatments with 2 levels of FFA (0.40% or 54.0%) and 3 degrees of fat saturation (iodine value [IV] = 77, 100, or 123) in a 2 × 3 factorial arrangement. Lipid sources were soybean oil (0.3% FFA and IV = 129.4), soybean-cottonseed acid oil blend (70.5% FFA and IV = 112.9), choice white grease (0.6% FFA and IV = 74.8), and choice white acid grease (56.0% FFA and IV = 79.0). Addition of lipid sources decreased ADFI (810 vs. 872 g/d; P = 0.018) and improved G:F (716 vs. 646 g/kg; P < 0.001). Diets high in FFA tended (P = 0.08) to improve final BW (21.35 vs. 21.01 kg) and ADG (576 vs. 560 g/d). Lipid-supplemented diets had greater ATTD of lipids than control diets (67.4% vs. 29.7%; P < 0.001). Apparent total tract digestibility of lipids was greater in diets with low FFA (69.9% vs. 64.9%; P < 0.001) and decreased linearly with increasing IV (73.2%, 69.1%, and 67.2%). For GE, ATTD was greater in diets with low FFA (83.1% vs. 80.9%; P = 0.001). In Exp. 2, 252 pigs at 7 d postweaning (BW of 7.0 ± 0.2 kg) were used for 28 d with 9 replicate pens per treatment and 4 pigs per pen. Diets included a control diet without added lipids and 6 treatments with 2.5%, 5.0%, or 7.5% of lipids from either poultry fat (1.9% FFA) or acidulated poultry fat (37.8% FFA) in a 2 × 3 factorial arrangement. Addition of lipids increased (P < 0.001) final BW (19.9 vs. 18.4 kg) and ADG (460 vs. 405 g/d) regardless of source. Fat increased (P < 0.001) ADFI when added at 2.5% and then decreased ADFI with each further increment (663, 740, 681, and 653 g for 0%, 2.5%, 5.0%, and 7.5% fat, respectively). Inclusion of lipids linearly (P < 0.001) improved G:F (615, 615, 688, and 692 g/kg for 0%, 2.5%, 5.0%, and 7.5% fat, respectively) and ATTD of lipids (17.8%, 50.2%, 71.0%, and 77.3% for 0, 2.5, 5.0, and 7.5% fat, respectively) and GE (76.1%, 76.4%, 83.3%, and 84.4% for 0%, 2.5%, 5.0%, and 7.5% fat, respectively). Acidulated lipids resulted in similar performance compared with refined lipids and could be economical alternatives to more expensive lipid sources.
Journal of Animal Science | 2014
D. C. Mahan; M. J. Azain; Thomas D. Crenshaw; G. L. Cromwell; C. R. Dove; Sung Woo Kim; M. D. Lindemann; Phillip S. Miller; James E. Pettigrew; H. H. Stein; E. van Heugten
Grains grown in various regions of the United States vary in their innate or natural Se contents. A regional study evaluated the effects of adding inorganic Se (sodium selenite) or organic Se (Se yeast) to diets with differing innate Se contents. A 2 × 2 + 1 factorial experiment evaluating 2 Se sources (organic or inorganic) at 2 Se levels (0.15 or 0.30 mg/kg) in 18 total replicates (n = 360 total pigs). A basal diet was fed without supplemental Se and served as the negative (basal) control. The study was conducted as a randomized complete block design in 9 states (Georgia, Illinois, Kentucky, Nebraska, North Carolina, Ohio, South Dakota, Texas, and Wisconsin) with each station conducting 2 replicates. Pigs were fed from 25 to approximately 115 kg BW. Similar dietary formulations were used at each station, incorporating a common source of trace mineral and Se premixes. Three pigs per treatment in 16 replicates (n = 240) were bled at 55, 85, and 115 kg BW and serum Se and glutathione peroxidase (GSH-Px) activities were determined. Three pigs (n = 260) from each treatment pen were killed at 115 kg BW and issues (liver, loin, and hair) were analyzed for Se. The corn Se content from the various states ranged from 0.026 to 0.283 mg Se/kg while the soybean meal Se content ranged from 0.086 to 0.798 mg Se/kg. Tissue and serum Se concentrations were greater (P < 0.01) when supplemental organic Se was fed, whereas serum GSH-Px was greater (P < 0.01) as Se level increased. There were linear increases (P < 0.01) in loin and quadratic increases (P < 0.01) in liver and hair Se concentrations as dietary Se level increased within each state. There was a source × level interaction (P < 0.01) for each tissue resulting in a greater increase when organic Se was fed. Serum Se and GSH-Px activity increased (P < 0.01) when both Se sources were fed and plateaued at each state at 0.15 mg Se/kg. There was a high and significant correlation between each tissue Se, serum Se, and GSH-Px activity to dietary Se level indicating that those states having greater grain natural Se contents also had greater tissue Se concentrations. These results indicate that a large difference in corn and soybean meal Se concentrations exists between states, that the addition of organic or inorganic Se to these grains increased tissue and serum Se in each state, and that organic Se was incorporated at greater concentrations in the loin, liver, and hair tissues of grower-finisher pigs than inorganic Se.
Journal of Animal Science | 2013
K. L. Price; Xi Lin; E. van Heugten; R. Odle; G. Willis; Jack Odle
An experiment was conducted to examine the interplay of diet physical form (liquid vs. dry), fatty acid chain length [medium- (MCT) vs. long-chain triglyceride (LCT)], and emulsification as determinants of fat utilization and growth of newly weaned pigs. Ninety-six pigs were weaned at 20.0 ± 0.3 d of age (6.80 ± 0.04 kg) and fed ad libitum 1 of 8 diets for 14 d according to a 2(3) factorial arrangement of treatments with 6 pens per diet and 2 pigs per pen. The MCT contained primarily C8:0 and C10:0 fatty acids, whereas the LCT mainly contained C16:0, C18:0, C18:1, and C18:2. Diet physical form greatly impacted piglet growth (P < 0.001), with liquid-fed pigs (486 g/d) growing faster than dry-fed pigs (332 g/d) by 46%. Pigs fed LCT grew 22% faster (P = 0.01) than MCT-fed pigs; however, effects of emulsifier were not detected (P > 0.1). Furthermore, feed intake and G:F were 15% and 29% greater for liquid-fed pigs, and intake also was 21% greater for pigs fed LCT (P = 0.01). Diet physical form had no effect on apparent ileal fatty acid digestibility, but as expected, digestibility was greater (P < 0.001) for the MCT than the LCT diet (98.5% vs. 93.4%). Emulsification improved digestibility of most fatty acids in pigs fed LCT but not MCT (interaction, P < 0.01). Both jejunal and ileal villi height increased from 7 to 14 d postweaning (P < 0.01). Liquid-fed pigs had greater jejunal crypt depth (P < 0.05) compared with pigs fed the dry diet; however, ileal morphology was not affected by diet physical form, fat chain length, or emulsification. Plasma ketone body concentrations were 6-fold greater in pigs fed MCT than LCT, and the difference was greater in pigs fed dry diets (interaction, P = 0.01). The bile salt concentration in jejunal digesta was 2.2-fold greater in pigs fed LCT than in pigs fed MCT (P < 0.001). Collectively, we conclude that feeding liquid diets containing emulsified LCT can improve fat utilization and markedly accentuate feed intake, growth, and G:F of weanling pigs.
Journal of Animal Science | 2015
D. S. Rosero; Jack Odle; C. Arellano; R. D. Boyd; E. van Heugten
Two studies were conducted 1) to determine the effects of free fatty acid (FFA) concentrations and the degree of saturation of lipids (unsaturated to saturated fatty acids ratio [U:S]) on apparent total tract digestibility (ATTD) and DE content of lipids and 2) to derive prediction equations to estimate the DE content of lipids when added to lactating sow diets. In Exp. 1, 85 lactating sows were assigned randomly to a 4 × 5 factorial arrangement of treatments plus a control diet with no added lipid. Factors included 1) FFA concentrations of 0, 18, 36, and 54% and 2) U:S of 2.0, 2.8, 3.5, 4.2, and 4.9. Diets were corn-soybean meal based and lipid was supplemented at 6%. Concentrations of FFA and U:S were obtained by blending 4 lipid sources: choice white grease (CWG; FFA = 0.3% and U:S = 2.0), soybean oil (FFA = 0.1% and U:S = 5.5), CWG acid oil (FFA = 57.8% and U:S = 2.1), and soybean-cottonseed acid oil (FFA = 67.5% and U:S = 3.8). Titanium dioxide was added to diets (0.5%) as a digestibility marker. Treatments started on d 4 of lactation and fecal samples were collected after 6 d of adaptation to diets on a daily basis from d 10 to 13. The ATTD of added lipid and DE content of lipids were negatively affected (linear, < 0.001) with increasing FFA concentrations, but negative effects were less pronounced with increasing U:S (interaction, < 0.05). Coefficients of ATTD for the added lipid and DE content of lipids increased with increasing U:S (quadratic, = 0.001), but these improvements were less pronounced when the FFA concentration was less than 36%. Digestible energy content of added lipid was described by DE (kcal/kg) = [8,381 - (80.6 × FFA) + (0.4 × FFA) + (248.8 × U:S) - (28.1 × U:S) + (12.8 × FFA × U:S)] ( = 0.74). This prediction equation was validated in Exp. 2, in which 24 lactating sows were fed diets supplemented with 6% of either an animal-vegetable blend (A-V; FFA = 14.5% and U:S = 2.3) or CWG (FFA = 3.7% and U:S = 1.5) plus a control diet with no added lipids. Digestible energy content of A-V (8,317 and 8,127 kcal/kg for measured and predicted values, respectively) and CWG (8,452 and 8,468 kcal/kg for measured and predicted values, respectively) were accurately estimated using the proposed equation. The proposed equation involving FFA concentration and U:S resulted in highly accurate estimations of DE content (relative error, +0.2 to -2.3%) of commercial sources of lipids for lactating sows.