M. Wessels
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Wessels.
ieee nuclear science symposium | 2008
R. Achenbach; P. Adragna; M. Aharrouche; V. Andrei; B. Åsman; B. M. Barnett; B. Bauss; M. Bendel; C. Bohm; J.R.A. Booth; J. Bracinik; I.P. Brawn; D. G. Charlton; J. T. Childers; N. J. Collins; C. J. Curtis; A.O. Davis; S. Eckweiler; E. Eisenhandler; P.J.W. Faulkner; J. Fleckner; F. Föhlisch; C. N. P. Gee; A. R. Gillman; C. Goringer; M. Groll; D. R. Hadley; P. Hanke; S. Hellman; A. Hidvegi
The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects, and energy sums. The final system consists of over 300 custom-built VME modules, of several different types. The installation at ATLAS of these modules, and the necessary infrastructure, was completed at the end of 2007. The system has since undergone intensive testing, both in standalone mode, and in conjunction with the whole of the ATLAS detector in combined running. The final steps of commissioning, and experience with running the full-scale system are presented. Results of integration tests performed with the upstream calorimeters, and downstream trigger and data-flow systems, are shown, along with an analysis of the performance of the calorimeter trigger in full ATLAS data-taking. This includes trigger operation during the cosmic muon runs from before LHC start-up, and a first look at LHC proton beam data.
Prepared for | 2008
D. Prieur; E.-E. Kluge; C. C. Ohm; M. C. Stockton; S. B. Silverstein; Murrough Landon; T. Kuehl; D. G. Charlton; Uli Schaefer; E. Eisenhandler; A. Hidvegi; C. Boehm; K. Schmitt; A. T. Watson; J. T. Childers; N. J. Collins; P. Adragna; Joergen Sjoelin; F. Föhlisch; U. Schäfer; M. Wessels; C.L.A. Tan; M. A. Wildt; J. Sjölin; F. Foehlisch; K. Meier; M. Groll; C. J. Curtis; P. D. Thompson; F. Mueller
The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the calorimeters. The installation of the full system of custom modules, crates and cables was completed in late 2007, but, even before the completion, it was being used as a trigger during ATLAS commissioning and integration. During 2008, the performance of the full system has been tuned during further commissioning and cosmic runs, leading to its use in initial LHC data taking. Results and analysis of the trigger performance in these runs will be presented.
ieee-npss real-time conference | 2014
M. Wessels
The Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment has been operating well since the start of LHC data taking, and played a major role in the Higgs boson discovery. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to allow more sophisticated digital filters for energy and timing measurement, as well as compensate for pile-up and baseline shifting effects. Two existing digital algorithm processor subsystems will receive substantial hardware and firmware upgrades to increase the real-time data path bandwidth, allowing topological information to be transmitted and processed at Level-1. An entirely new subsystem, the Level- 1 Topological Processor, will receive real-time data from both the upgraded L1Calo and Level-1 Muon Trigger to perform trigger algorithms based on entire event topologies. During the second upgrade phase in 2018-19, major parts of L1Calo will be rebuilt in order to exploit a tenfold increase in the available calorimeter data granularity compared to that of the current system. The calorimeter signals will be received via optical fibres and distributed to two distinct processing systems. Those systems apply sliding window algorithms and quasi-offline algorithms to achieve object reconstruction and identification. The algorithms are implemented on high-density electronics boards which make use of recent developments in high speed data transmission and FPGA technology. The expected performance improvements are presented together with the upgraded hardware and firmware implementations. The status of the prototypes, integration and commissioning efforts are also reviewed.
Prepared for | 2009
R. Achenbach; E.-E. Kluge; C. C. Ohm; M. C. Stockton; S. B. Silverstein; Murrough Landon; T. Kuehl; D. G. Charlton; Uli Schaefer; E. Eisenhandler; A. Hidvegi; C. Boehm; K. Schmitt; A. T. Watson; J. T. Childers; N. J. Collins; P. Adragna; Joergen Sjoelin; F. Föhlisch; U. Schäfer; M. Wessels; D. Prieur; M. A. Wildt; J. Sjölin; F. Foehlisch; K. Meier; M. Groll; C. J. Curtis; P. D. Thompson; F. Mueller
The ATLAS Level-1 Calorimeter Trigger is a hardwarebased system which aims to identify objects with high transverse momentum within an overall latency of 2.5μs. It is composed of a PreProcessor system (PPr) which digitises 7200 analogue input channels, determines the bunch crossing of the interaction, applies a digital noise filter, and provides a fine calibration; and two subsequent digital processors. The PreProcessor system needs various channel dependent parameters to be set in order to provide digital signals which are aligned in time and have proper energy calibration. The different techniques which are used to derive these parameters are described along with the quality tests of the analogue input signals.
Prepared for | 2008
R. Achenbach; E.-E. Kluge; C. C. Ohm; M. C. Stockton; S. B. Silverstein; Murrough Landon; T. Kuehl; D. G. Charlton; Uli Schaefer; E. Eisenhandler; A. Hidvegi; Dave Sankey; K. Schmitt; A. T. Watson; J. T. Childers; N. J. Collins; P. Adragna; Joergen Sjoelin; F. Föhlisch; U. Schäfer; M. Wessels; D. Prieur; M. A. Wildt; J. Sjölin; F. Foehlisch; K. Meier; M. Groll; C. J. Curtis; P. D. Thompson; F. Mueller
The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the ATLAS calorimeters. The complete trigger system consists of over 300 custom designed VME modules of varying complexity. These modules are based around FPGAs or ASICs with many configurable parameters, both to initialize the system with correct calibrations and timings and to allow flexibility in the trigger algorithms. The control, testing and monitoring of these modules requires a comprehensive, but well-designed and modular, software framework, which we will describe in this paper.
Prepared for | 2008
R. Achenbach; E.-E. Kluge; C. C. Ohm; M. C. Stockton; S. B. Silverstein; Murrough Landon; T. Kuehl; D. G. Charlton; Uli Schaefer; E. Eisenhandler; A. Hidvegi; Dave Sankey; K. Schmitt; A. T. Watson; J. T. Childers; N. J. Collins; P. Adragna; Joergen Sjoelin; F. Föhlisch; U. Schäfer; M. Wessels; D. Prieur; M. A. Wildt; J. Sjölin; F. Foehlisch; K. Meier; M. Groll; C. J. Curtis; P. D. Thompson; F. Mueller
The ATLAS Level-1 calorimeter trigger is a hardware-based system with the goal of identifying high-pT objects and to measure total and missing ET in the ATLAS calorimeters within an overall latency of 2.5 s. This trigger system is composed of the Preprocessor which digitises about 7200 analogue input channels and two digital processors to identify high-pT signatures and to calculate the energy sums. The digital part consists of multi-stage, pipelined custom-built modules. The high demands on connectivity between the initial analogue stage and digital part and between the custom-built modules are presented. Furthermore the techniques to establish timing regimes and verify connectivity and stable operation of these digital links will be described.
ieee-npss real-time conference | 2007
A.W. Jung; A. Baird; R. Baldinger; S. Baumgartner; D. Beneckenstein; N. Berger; M.-O. Boenig; L. Caminada; D. Dodt; E. Elsen; M. Kolander; S.D. Kolya; K. Kriiger; K. Lohwasser; D. Meer; D. Mercer; V. Michels; D. Muller; Jörg Müller; J. Naumann; Paul Newman; Dave Sankey; M. Sauter; A. Schöning; Hans-Christian Schultz-Coulon; M. Wessels; Ch. Wissing; W. Yan
To make the best possible use of the higher luminosity provided by the upgraded HERA collider, the H1 collaboration has built the Fast Track Trigger (FTT). It is integrated in the first three levels (L1-L3) of the H1 trigger scheme and provides enhanced selectivity for events with charged particles. The FTT allows the reconstruction of tracks in the central drift chambers down to 100 MeV. Within the 2.3 mus latency of the first trigger level coarse two dimensional track information in the plane transverse to the beam is provided. At the second trigger level (20 mus latency), high resolution, three dimensional tracks are reconstructed. Trigger decisions are derived from track momenta, multiplicities and topologies. At the third trigger level a farm of commercial PowerPC boards allows a partial event reconstruction. Within the L3 latency of 100 mus exclusive final states (e.g. D*,J/psi) are identified using track based invariant mass calculations. In addition an on-line particle identification of electrons and muons with additional information from other subdetectors is performed. First results obtained from the third level, which is fully operational since 2006, are presented.
Physics Procedia | 2012
M. Wessels
Physical Review Letters | 2004
G. Gabrielse; N. S. Bowden; Paul Oxley; A. Speck; C. H. Storry; Joseph N. Tan; M. Wessels; D. Grzonka; W. Oelert; G. Schepers; T. Sefzick; Jochen Walz; Heiko Pittner; T. W. Hänsch; E. A. Hessels
Physical Review Letters | 2004
G. Gabrielse; Nathaniel Bowden; Paul Oxley; Angela Karen Speck; C. H. Storry; Joseph N. Tan; M. Wessels; D. Grzonka; Walter Oelert; G. Schepers; T. Sefzick; Jochen Walz; Heiko Pittner; T. W. Hänsch; E. A. Hessels