Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Wiescher is active.

Publication


Featured researches published by M. Wiescher.


Physics Reports | 1998

rp-process nucleosynthesis at extreme temperature and density conditions

Hendrik Schatz; A. Aprahamian; J. Görres; M. Wiescher; T. Rauscher; J.F. Rembges; F.-K. Thielemann; B. Pfeiffer; P. Möller; Karl-Ludwig Kratz; H. Herndl; B. A. Brown; H. Rebel

We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-capture reactions accelerate the reaction flow into the Z greater than or equal to 36 region considerably. Therefore, the rp-process in most X-ray bursts does not end in the Z = 32-36 region as previously assumed and overproduction factors of 10(7)-10(8) are reached for some light p-nuclei in the A = 80-100 region. This might be of interest in respect of the yet unexplained large observed solar system abundances of these nuclei. Nuclei in this region can also be produced via the rp-proces in accretion disks around low mass black holes. Our results indicate that the rp-process energy production in the Z < 32 region cannot be neglected in these scenarios. We discuss in detail the influence of the various nuclear structure input parameters and their current uncertainties on these results. It turns out that rp-process nucleosynthesis is mainly determined by nuclear masses and beta-decay rates of nuclei along the proton drip line. We present a detailed list of nuclei for which mass or beta-decay rate measurements would be crucial to further constrain the models


Physical Review Letters | 2001

End Point of therpProcess on Accreting Neutron Stars

H. Schatz; A. Aprahamian; V. Barnard; Lars Bildsten; Andrew Cumming; M. Ouellette; T. Rauscher; F.-K. Thielemann; M. Wiescher

We calculate the rapid proton (rp) capture process of hydrogen burning on the surface of an accreting neutron star with an updated reaction network that extends up to Xe, far beyond previous work. In both steady-state nuclear burning appropriate for rapidly accreting neutron stars (such as the magnetic polar caps of accreting x-ray pulsars) and unstable burning of type I x-ray bursts, we find that the rp process ends in a closed SnSbTe cycle. This prevents the synthesis of elements heavier than Te and has important consequences for x-ray burst profiles, the composition of accreting neutron stars, and potentially galactic nucleosynthesis of light p nuclei.


Astrophysical Journal Supplement Series | 2010

THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS

Richard H. Cyburt; A. Matthew Amthor; Ryan Ferguson; Z. Meisel; Karl U. Smith; Scott Warren; Alexander Heger; R. D. Hoffman; T. Rauscher; Alexander Sakharuk; H. Schatz; Friedrich-Karl Thielemann; M. Wiescher

We present results from the JINA REACLIB project, an ongoing effort to maintain a current and accurate library of thermonuclear reaction rates for astrophysical applications. Ongoing updates are transparently documented and version tracked, and any set of rates is publicly available and can be downloaded via a Web interface at http://groups.nscl.msu.edu/jina/reaclib/db/. We discuss here our library V1.0, a snapshot of recommended rates for stable and explosive hydrogen and helium burning. We show that the updated reaction rates lead to modest but significant changes in full network, one-dimensional X-ray burst model calculations, compared with calculations with previously used reaction rate sets. The late time behavior of X-ray burst light curves shows significant changes, suggesting that the previously found small discrepancies between model calculations and observations may be solved with a better understanding of the nuclear input. Our X-ray burst model calculations are intended to serve as a benchmark for future model comparisons and sensitivity studies, as the complete underlying nuclear physics is fully documented and publicly available.


Reviews of Modern Physics | 2010

Solar fusion cross sections II: the pp chain and CNO cycles

E. G. Adelberger; Antonio Garcia; R. G. H. Robertson; K. A. Snover; A. B. Balantekin; K. M. Heeger; Michael J. Ramsey-Musolf; D. Bemmerer; A. R. Junghans; C. A. Bertulani; Jiunn-Wei Chen; H. Costantini; P. Prati; M Couder; E Uberseder; M. Wiescher; Richard H. Cyburt; B. Davids; Sj Freedman; M Gai; D Gazit; L. Gialanella; G. Imbriani; U. Greife; M Hass; W. C. Haxton; T Itahashi; K. Kubodera; K Langanke; D Leitner

The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for {sup 8}B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.


Astrophysical Journal Supplement Series | 2004

Models for Type I X-Ray Bursts with Improved Nuclear Physics

S. E. Woosley; Alexander Heger; Andrew Cumming; R. D. Hoffman; J. Pruet; T. Rauscher; J. L. Fisker; H. Schatz; B. A. Brown; M. Wiescher

Multizone models of Type I X-ray bursts are presented that use an adaptive nuclear reaction network of unprecedented size, up to 1300 isotopes, for energy generation and include the most recent measurements and estimates of critical nuclear physics. Convection and radiation transport are included in calculations that carefully follow the changing composition in the accreted layer, both during the bursts themselves and in their ashes. Sequences of bursts, up to 15 in one case, are followed for two choices of accretion rate and metallicity, up to the point at which a limit cycle equilibrium is established. For (M)over dot=1.75x10(-9) M-circle dot yr(-1) (and (M)over dot=3.5x10(-10) M-circle dot yr(-1), for low metallicity), combined hydrogen-helium flashes occur. These bursts have light curves with slow rise times (seconds) and long tails. The rise times, shapes, and tails of these light curves are sensitive to the efficiency of nuclear burning at various waiting points along the rp-process path, and these sensitivities are explored. Each displays ``compositional inertia`` in that its properties are sensitive to the fact that accretion occurs onto the ashes of previous bursts that contain leftover hydrogen, helium, and CNO nuclei. This acts to reduce the sensitivity of burst properties to metallicity. Only the first anomalous burst in one model produces nuclei as heavy as A=100. For the present choice of nuclear physics and accretion rates, other bursts and models make chiefly nuclei with Aapproximate to64. The amount of carbon remaining after hydrogen-helium bursts is typically less than or similar to1 and decreases further as the ashes are periodically heated by subsequent bursts. For (M)over dot=3.5x10(-10) M-circle dot yr(-1) and solar metallicity, bursts are ignited in a hydrogen-free helium layer. At the base of this layer, up to 90 to carbon prior to the unstable ignition of the helium shell. These helium-ignited bursts have (1) briefer, brighter light curves with shorter tails, (2) very rapid rise times (>0.1 s), and (3) ashes lighter than the iron group.


The Astrophysical Journal | 2010

THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS

Marco Pignatari; R. Gallino; M. Heil; M. Wiescher; F. Käppeler; Falk Herwig; S. Bisterzo

The slow neutron capture process in massive stars (weak s process) produces most of the s-process isotopes between iron and strontium. Neutrons are provided by the 22Ne(?,n)25Mg reaction, which is activated at the end of the convective He-burning core and in the subsequent convective C-burning shell. The s-process-rich material in the supernova ejecta carries the signature of these two phases. In the past years, new measurements of neutron capture cross sections of isotopes beyond iron significantly changed the predicted weak s-process distribution. The reason is that the variation of the Maxwellian-averaged cross sections (MACS) is propagated to heavier isotopes along the s path. In the light of these results, we present updated nucleosynthesis calculations for a 25 M ? star of Population I (solar metallicity) in convective He-burning core and convective C-burning shell conditions. In comparison with previous simulations based on the Bao et?al. compilation, the new measurement of neutron capture cross sections leads to an increase of s-process yields from nickel up to selenium. The variation of the cross section of one isotope along the s-process path is propagated to heavier isotopes, where the propagation efficiency is higher for low cross sections. New 74Ge, 75As, and 78Se MACS result in a higher production of germanium, arsenic, and selenium, thereby reducing the s-process yields of heavier elements by propagation. Results are reported for the He core and for the C shell. In shell C-burning, the s-process nucleosynthesis is more uncertain than in the He core, due to higher MACS uncertainties at higher temperatures. We also analyze the impact of using the new lower solar abundances for CNO isotopes on the s-process predictions, where CNO is the source of 22Ne, and we show that beyond Zn this is affecting the s-process yields more than nuclear or stellar model uncertainties considered in this paper. In particular, using the new updated initial composition, we obtain a high s-process production (overproduction higher than 16O, ~100) for Cu, Ga, Ge, and As. Using the older abundances by Anders & Grevesse, also Se, Br, Kr, and Rb are efficiently produced. Our results have important implications in explaining the origin of copper in the solar abundance distribution, pointing to a prevailing contribution from the weak s-process in agreement with spectroscopic observations and Galactic chemical evolution calculations. Because of the improvement due to the new MACS for nickel and copper isotopes, the nucleosynthesis of copper is less affected by nuclear uncertainties compared to heavier s-process elements. An experimental determination of the 63Ni MACS is required for a further improvement of the abundance prediction of copper. The available spectroscopic observations of germanium and gallium in stars are also discussed, where most of the cosmic abundances of these elements derives from the s-process in massive stars.


The Astrophysical Journal | 2004

Reaction Rate Uncertainties and the Production of 19F in Asymptotic Giant Branch Stars

Maria Lugaro; Claudio Ugalde; Amanda Karakas; J. Görres; M. Wiescher; John C. Lattanzio; Robert C. Cannon

We present nucleosynthesis calculations and the resulting 19F stellar yields for a large set of models with different masses and metallicity. During the asymptotic giant branch (AGB) phase, 19F is produced as a consequence of nucleosynthesis occurring during the convective thermal pulses and also during the interpulse periods if protons from the envelope are partially mixed in the top layers of the He intershell (partial mixing zone). We find that the production of fluorine depends on the temperature of the convective pulses, the amount of primary 12C mixed into the envelope by third dredge-up, and the extent of the partial mixing zone. Then we perform a detailed analysis of the reaction rates involved in the production of 19F and the effects of their uncertainties. We find that the major uncertainties are associated with the 14C(α, γ)18O and 19F(α, p)22Ne reaction rates. For these two reactions we present new estimates of the rates and their uncertainties. In both cases the revised rates are lower than previous estimates. The effect of the inclusion of the partial mixing zone on the production of fluorine strongly depends on the very uncertain 14C(α, γ)18O reaction rate. The importance of the partial mixing zone is reduced when using our estimate for this rate. Overall, rate uncertainties result in uncertainties in the fluorine production of about 50% in stellar models with mass 3 M☉ and of about a factor of 7 in stellar models of mass 5 M☉. This larger effect at high masses is due to the high uncertainties of the 19F(α, p)22Ne reaction rate. Taking into account both the uncertainties related to the partial mixing zone and those related to nuclear reactions, the highest values of 19F enhancements observed in AGB stars are not matched by the models. This is a problem that will have to be revised by providing a better understanding of the formation and nucleosynthesis in the partial mixing zone, as well as in relation to reducing the uncertainties of the 14C(α, γ)18O reaction rate. At the same time, the possible effect of cool bottom processing at the base of the convective envelope should be included in the computation of AGB nucleosynthesis. This process could, in principle, help to match the highest 19F abundances observed by decreasing the C/O ratio at the surface of the star, while leaving the 19F abundance unchanged.


Astrophysical Journal Supplement Series | 2001

Proton-induced Thermonuclear Reaction Rates for A = 20–40 Nuclei

Christian Iliadis; John M. D’Auria; Sumner G. Starrfield; William J. Thompson; M. Wiescher

Proton-induced reaction rates on 26 stable and 29 unstable target nuclei in the mass A = 20–40 region have been evaluated and compiled. Recommended reaction rates, assuming that all interacting nuclei are in the ground state, are presented in tabular form on a temperature grid in the range T = 0.01–10.0 GK. Most reaction rates involving stable targets were normalized to a set of measured standard resonance strengths in the sd shell. For the majority of reaction rates, experimental information from transfer reaction studies has been used consistently. Our results are compared with recent statistical model (Hauser-Feshbach) calculations. Reaction rate uncertainties are presented and amount to several orders of magnitude for many of the reactions. Several of these reaction rates and/or their corresponding uncertainties deviate from results of previous compilations. In most cases, the deviations are explained by the fact that new experimental information became available recently. Examples are given for calculating reaction rates and reverse reaction rates for thermally excited nuclei from the present results. The survey of literature for this review was concluded in 2000 August.


The Astrophysical Journal | 2014

GALACTIC CHEMICAL EVOLUTION AND SOLAR s-PROCESS ABUNDANCES: DEPENDENCE ON THE 13C-POCKET STRUCTURE

S. Bisterzo; C. Travaglio; R. Gallino; M. Wiescher; F. Käppeler

We study the s-process abundances (A > 90) at the epoch of the solar-system formation. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic Chemical Evolution (GCE) model: (i) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s-distribution of isotopes with A > 130; (ii) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C-pocket, which may affect the efficiency of the 13C(a, n)16O reaction, the major neutron source of the s-process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s-predictions at the epoch of the solar-system formation marginally depend on the size and shape of the 13C-pocket once a different weighted range of 13C-pocket strengths is assumed. We ascertain that, independently of the internal structure of the 13C-pocket, the missing solar-system s-process contribution in the range from A = 90 to 130 remains essentially the same.


The Astrophysical Journal | 2008

The s-Process in Massive Stars at Low Metallicity: The Effect of Primary 14N from Fast Rotating Stars

M. Pignatari; R. Gallino; G. Meynet; Raphael Hirschi; Falk Herwig; M. Wiescher

The goal of this Letter is to analyze the impact of a primary neutron source on the s-process nucleosynthesis in massive stars at halo metallicity. Recent stellar models including rotation at very low metallicity predict a strong production of primary 14N. Part of the nitrogen produced in the H-burning shell diffuses by rotational mixing into the He core where it is converted to 22Ne providing additional neutrons for the s-process. We present nucleosynthesis calculations for a 25 M -->☉ star at [Fe/H] = –3, –4, where about 0.8% in mass is made of primary 22Ne in the convective He-burning core. The usual weak s-process shape is changed by the additional neutron source with a peak between Sr and Ba, where the s-process yields increase by orders of magnitude with respect to the yields obtained without rotation. Iron seeds are fully consumed and the maximum production of Sr, Y, and Zr is reached. On the other hand, the s-process efficiency beyond Sr and the ratio Sr/Ba are strongly affected by the amount of 22Ne and by nuclear uncertainties, first of all by the 22Ne(α, n)25Mg reaction. Finally, assuming that 22Ne is primary in the considered metallicity range, the s-process efficiency decreases with metallicity due to the effect of the major neutron poisons 25Mg and 22Ne. This work represents a first step toward the study of primary neutron source effect in fast rotating massive stars, and its implications are discussed in the light of spectroscopic observations of heavy elements at halo metallicity.

Collaboration


Dive into the M. Wiescher's collaboration.

Top Co-Authors

Avatar

J. Görres

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

E. Stech

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

H. Schatz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

F. Käppeler

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Couder

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Couder

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

R. deBoer

Joint Institute for Nuclear Astrophysics

View shared research outputs
Top Co-Authors

Avatar

A. Couture

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Uberseder

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge