Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Yoshinuma is active.

Publication


Featured researches published by M. Yoshinuma.


Physics of Plasmas | 2009

Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device

K. Ida; M. Yoshinuma; M. Osakabe; K. Nagaoka; M. Yokoyama; H. Funaba; C. Suzuki; Takeshi Ido; A. Shimizu; I. Murakami; N. Tamura; H. Kasahara; Y. Takeiri; K. Ikeda; K. Tsumori; O. Kaneko; S. Morita; M. Goto; K. Tanaka; K. Narihara; T. Minami; I. Yamada

Extremely hollow profiles of impurities (denoted as “impurity hole”) are observed in the plasma with a steep gradient of the ion temperature after the formation of an internal transport barrier (ITB) in the ion temperature transport in the Large Helical Device [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. The radial profile of carbon becomes hollow during the ITB phase and the central carbon density keeps dropping and reaches 0.1%–0.3% of plasma density at the end of the ion ITB phase. The diffusion coefficient and the convective velocity of impurities are evaluated from the time evolution of carbon profiles assuming the diffusion and the convection velocity are constant in time after the formation of the ITB. The transport analysis gives a low diffusion of 0.1–0.2 m2/s and the outward convection velocity of ∼1 m/s at half of the minor radius, which is in contrast to the tendency in tokamak plasmas for the impurity density to increase due to an inward convection and low diffusion in the ITB region. T...


Nuclear Fusion | 2007

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; T. Mutoh; O. Kaneko; K. Kawahata; T. Mito; K. Ida; S. Imagawa; Y. Nagayama; T. Shimozuma; K.Y. Watanabe; S. Masuzaki; J. Miyazawa; T. Morisaki; S. Morita; S. Ohdachi; N. Ohno; K. Saito; S. Sakakibara; Y. Takeiri; N. Tamura; K. Toi; M. Tokitani; M. Yokoyama; M. Yoshinuma; K. Ikeda; A. Isayama; K. Ishii

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 × 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse.


Physics of Plasmas | 2003

Formation of electron internal transport barrier and achievement of high ion temperature in Large Helical Device

Y. Takeiri; T. Shimozuma; S. Kubo; S. Morita; M. Osakabe; O. Kaneko; K. Tsumori; Y. Oka; K. Ikeda; K. Nagaoka; N. Ohyabu; K. Ida; M. Yokoyama; J. Miyazawa; M. Goto; K. Narihara; I. Yamada; H. Idei; Y. Yoshimura; N. Ashikawa; M. Emoto; H. Funaba; S. Inagaki; M. Isobe; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; A. Kostrioukov; R. Kumazawa

An internal transport barrier (ITB) was observed in the electron temperature profile in the Large Helical Device [O. Motojima et al., Phys. Plasmas 6, 1843 (1999)] with a centrally focused intense electron cyclotron resonance microwave heating. Inside the ITB the core electron transport was improved, and a high electron temperature, exceeding 10 keV in a low density, was achieved in a collisionless regime. The formation of the electron-ITB is correlated with the neoclassical electron root with a strong radial electric field determined by the neoclassical ambipolar flux. The direction of the tangentially injected beam-driven current has an influence on the electron-ITB formation. For the counter-injected target plasma, a steeper temperature gradient, than that for the co-injected one, was observed. As for the ion temperature, high-power NBI (neutral beam injection) heating of 9 MW has realized a central ion temperature of 5 keV with neon injection. By introducing neon gas, the NBI absorption power was incr...


Nuclear Fusion | 2010

Spontaneous toroidal rotation driven by the off-diagonal term of momentum and heat transport in the plasma with the ion internal transport barrier in LHD

K. Ida; M. Yoshinuma; K. Nagaoka; M. Osakabe; S. Morita; M. Goto; M. Yokoyama; H. Funaba; S. Murakami; K. Ikeda; Haruhisa Nakano; K. Tsumori; Y. Takeiri; O. Kaneko

A spontaneous rotation in the co-direction is observed in plasmas with an ion internal transport barrier (ITB), where the ion temperature gradient is relatively large (∂Ti/∂r ~ 5 keV m−1 and ) in LHD. Because of the large ion temperature gradients, the magnitude of the spontaneous toroidal flow, , becomes large enough to cancel the toroidal flows driven by tangential injected neutral beams and the net toroidal rotation velocity is almost zero at the outer half of the plasma minor radius even in the plasmas with counter-dominant NB injections. The effect of velocity pinch is excluded even if it exits because of zero rotation velocity. The spontaneous toroidal flow appears in the direction of co-rotation after the formation of the ITB, not during or before the ITB formation. The causality between the change in and ∂Ti/∂r observed in this experiment clearly shows that the spontaneous rotation is driven by the ion temperature gradient as the off-diagonal terms of momentum and heat transport.


Plasma Physics and Controlled Fusion | 2003

Formation of electron internal transport barriers by highly localized electron cyclotron resonance heating in the large helical device

T. Shimozuma; S. Kubo; H. Idei; Y. Yoshimura; T. Notake; K. Ida; N. Ohyabu; I. Yamada; K. Narihara; S. Inagaki; Y. Nagayama; Y. Takeiri; H. Funaba; S. Muto; Kenji Tanaka; M. Yokoyama; S. Murakami; M. Osakabe; R. Kumazawa; N. Ashikawa; M. Emoto; M. Goto; K. Ikeda; M. Isobe; T Kobichi; Y. Liang; S. Masuzaki; T. Minami; J. Miyazawa; S. Morita

Internal transport barriers with respect to electron thermal transport (eITB) were observed in the large helical device, when the electron cyclotron resonance heating (ECH) power was highly localized on the centre of a plasma sustained by neutral beam injection. The eITB is characterized by a high central electron temperature of 6–8 keV with an extremely steep gradient, as high as 55 keV m−1 and a low electron thermal diffusivity within a normalized average radius ρ≈0.3 as well as by the existence of clear thresholds for the ECH power and plasma collisionality.


Nuclear Fusion | 2006

Experimental study of particle transport and density fluctuations in LHD

K. Tanaka; Clive Michael; Andrei Sanin; L. N. Vyacheslavov; K. Kawahata; S. Murakami; Arimitsu Wakasa; S. Okajima; H. Yamada; M. Shoji; J. Miyazawa; S. Morita; T. Tokuzawa; T. Akiyama; M. Goto; K. Ida; M. Yoshinuma; I. Yamada; M. Yokoyama; S. Masuzaki; T. Morisaki; R. Sakamoto; H. Funaba; S. Inagaki; M. Kobayashi; A. Komori

A variety of electron density (ne) profiles have been observed in the Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (Bt). The particle transport coefficients, i.e. diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a function of electron temperature (Te), and vary with Bt. Edge diffusion coefficients are proportional to . Non-zero V is observed, and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity both in the core and edge reverses direction from inward to outward as the Te gradient increases. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation profiles are measured by a two-dimensional phase contrast interferometer. It was found that fluctuations which are localized in the edge propagate towards the ion diamagnetic direction in the laboratory frame, while the phase velocity of fluctuations around mid-radius is close to the plasma poloidal Er × Bt rotation velocity. The fluctuation level becomes larger as particle flux becomes larger in the edge region.


Nuclear Fusion | 2005

Overview of confinement and MHD stability in the Large Helical Device

O. Motojima; K. Ida; K.Y. Watanabe; Y. Nagayama; A. Komori; T. Morisaki; B.J. Peterson; Y. Takeiri; K. Ohkubo; K. Tanaka; T. Shimozuma; S. Inagaki; T. Kobuchi; S. Sakakibara; J. Miyazawa; H. Yamada; N. Ohyabu; K. Narihara; K. Nishimura; M. Yoshinuma; S. Morita; T. Akiyama; N. Ashikawa; C. D. Beidler; M. Emoto; T. Fujita; Takeshi Fukuda; H. Funaba; P. Goncharov; M. Goto

The Large Helical Device is a heliotron device with L = 2 and M = 10 continuous helical coils with a major radius of 3.5–4.1 m, a minor radius of 0.6 m and a toroidal field of 0.5–3 T, which is a candidate among toroidal magnetic confinement systems for a steady state thermonuclear fusion reactor. There has been significant progress in extending the plasma operational regime in various plasma parameters by neutral beam injection with a power of 13 MW and electron cyclotron heating (ECH) with a power of 2 MW. The electron and ion temperatures have reached up to 10 keV in the collisionless regime, and the maximum electron density, the volume averaged beta value and stored energy are 2.4 × 1020 m−3, 4.1% and 1.3 MJ, respectively. In the last two years, intensive studies of the magnetohydrodynamics stability providing access to the high beta regime and of healing of the magnetic island in comparison with the neoclassical tearing mode in tokamaks have been conducted. Local island divertor experiments have also been performed to control the edge plasma aimed at confinement improvement. As for transport study, transient transport analysis was executed for a plasma with an internal transport barrier and a magnetic island. The high ion temperature plasma was obtained by adding impurities to the plasma to keep the power deposition to the ions reasonably high even at a very low density. By injecting 72 kW of ECH power, the plasma was sustained for 756 s without serious problems of impurities or recycling.


Nuclear Fusion | 2005

Control of the radial electric field shear by modification of the magnetic field configuration in LHD

K. Ida; M. Yoshinuma; M. Yokoyama; S. Inagaki; Noriko Tamura; B.J. Peterson; T. Morisaki; S. Masuzaki; A. Komori; Y. Nagayama; K. Tanaka; K. Narihara; K.Y. Watanabe; C. D. Beidler

Control of the radial electric field, Er, is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ?h, (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current.


Nuclear Fusion | 2015

Towards an emerging understanding of non-locality phenomena and non-local transport

K. Ida; Z. Shi; H.J. Sun; S. Inagaki; K. Kamiya; J. E. Rice; Noriko Tamura; P. H. Diamond; G. Dif-Pradalier; X.L. Zou; K. Itoh; Satoru Sugita; Ö. D. Gürcan; T. Estrada; C. Hidalgo; T.S. Hahm; A. Field; X.T. Ding; Yoshiteru Sakamoto; Stella Oldenbürger; M. Yoshinuma; T. Kobayashi; M. Jiang; S.H. Hahn; Y.M. Jeon; S.H. Hong; Y. Kosuga; J.Q. Dong; S.-I. Itoh

In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed


Nuclear Fusion | 2009

On impurity handling in high performance stellarator/heliotron plasmas

R. Burhenn; Y. Feng; K. Ida; H. Maassberg; K.J. McCarthy; D. Kalinina; M. Kobayashi; S. Morita; Y. Nakamura; H. Nozato; S. Okamura; S. Sudo; C. Suzuki; Noriko Tamura; A. Weller; M. Yoshinuma; B. Zurro

The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long-pulse (quasi steady state) operation, which is an intrinsic property of stellarators and heliotrons. Significant progress has been made in establishing high performance plasmas. A crucial point is the increasing impurity confinement at high density observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse. In addition, theoretical predictions for non-axisymmetric configurations predict the absence of impurity screening by ion temperature gradients in standard ion-root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and W7-AS due to the onset of friction forces in the (high density and low temperature) scrape-off-layer (SOL), the generation of magnetic islands at the plasma boundary and to a certain degree also by edge localized modes, flushing out impurities and reducing the net impurity influx into the core. In both the W7-AS high density H-mode regime and in the case of application of sufficient electron cyclotron radiation heating power a reduction in impurity core confinement was observed. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. Impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement.

Collaboration


Dive into the M. Yoshinuma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Nagaoka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Tanaka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

M. Osakabe

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Funaba

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge