Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten A. Jongsma is active.

Publication


Featured researches published by Maarten A. Jongsma.


Journal of Insect Physiology | 1997

The adaptation of insects to plant protease inhibitors

Maarten A. Jongsma; Caroline J. Bolter

Plants and herbivores have been co-evolving for thousands of years, and as a result, plants have defence mechanisms that offer protection against many herbivores such as nematodes, insects, birds and mammals. Only when a herbivore has managed to adapt to these defence mechanisms does it have the potential to become a pest. One such method of plant defence involves the production of protease inhibitors (PIs). These inhibitors are proteins that may be found constitutively in various parts of the plant, or may be induced in response to herbivore attack. PIs work at the gut level, by inhibiting the digestion of plant protein. This review focuses on insect herbivores and looks at the mechanisms involved in the role and function of PIs in plant defense against insects, as well as at the ability of well adapted species to overcome the effects of these plant PIs.


The Plant Cell | 2003

Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants

Asaph Aharoni; Ashok P. Giri; Stephan Deuerlein; F.C. Griepink; Willem-Jan de Kogel; Francel Verstappen; Harrie A. Verhoeven; Maarten A. Jongsma; Wilfried Schwab; Harro J. Bouwmeester

Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.


The Plant Cell | 2004

Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species

Asaph Aharoni; Ashok P. Giri; Francel Verstappen; Cinzia M. Bertea; Robert Sévenier; Zhongkui Sun; Maarten A. Jongsma; Wilfried Schwab; Harro J. Bouwmeester

The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as α-pinene and β-myrcene, and caused the loss of these compounds in the cultivated strawberries. The loss of α-pinene also further influenced the fruit flavor profile because it was no longer available as a substrate for the production of the downstream compounds myrtenol and myrtenyl acetate. This phenomenon was demonstrated by cloning and characterizing a cytochrome P450 gene (Pinene Hydroxylase) that encodes the enzyme catalyzing the C10 hydroxylation of α-pinene to myrtenol. The findings shed light on the molecular evolutionary mechanisms resulting in different flavor profiles that are eventually selected for in domesticated species.


Journal of Insect Physiology | 1995

Colorado potato beetles (leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate

Caroline J. Bolter; Maarten A. Jongsma

Abstract Potato plants were treated with gaseous methyl jasmonate (MJ) to obtain leaves with high induced levels of cysteine and aspartic proteinase inhibitors. Induced papain inhibitor activity was estimated at 4% of total protein. Other conditions produced leaves with low and moderate levels of this inhibitor. Development of Colorado potato beetle larvae was similar when they were reared on leaves containing low, moderate and high levels of papain inhibitor. Nevertheless, general proteinase activity was significantly reduced (42%) in insects reared on the high inhibitor diet, while proteinase activity that was insensitive to induced inhibitors in juice from MJ-treated leaves had increased two-fold. Activities towards the specific cysteine proteinase substrate p -Glu-Phe-Leu- p NA were the same in guts from insects reared on the three leaf types. However, juice from MJ-treated leaves inhibited as much as 67% of this activity in guts of insects reared on the low inhibitor diet compared to only 27% of the activity in gut extracts from insects reared on MJ-treated leaves, indicating a 2.5-fold induction of cysteine proteinase activity insensitive to potato proteinase inhibitors. None of the activities towards another specific cysteine proteinase substrate l -Arg- p NA were sensitive to inhibitors from MJ-treated leaves, but guts of insects fed these leaves had a 3.5-fold induction of this proteinase activity compared to those reared on plants containing low papain inhibitor levels. These data suggest that Colorado potato beetle larvae compensated for inhibited gut proteolytic activity during chronic intake of papain inhibitors by synthesizing insensitive proteinase(s).


Phytochemistry Reviews | 2006

Metabolic Engineering of Terpenoid Biosynthesis in Plants

Asaph Aharoni; Maarten A. Jongsma; Tok-Yong Kim; Man-Bok Ri; Ashok P. Giri; Francel Verstappen; Wilfried Schwab; Harro J. Bouwmeester

Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contribution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe our recent results with terpenoid engineering, focusing on two terpenoid classes the monoterpenoids and sesquiterpenoids. The emerging picture is that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localisation of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phytotoxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behaviour.


Planta | 2003

The promoter–terminator of chrysanthemum rbcS1 directs very high expression levels in plants

Nikolay S. Outchkourov; J. Peters; J. de Jong; W. Rademakers; Maarten A. Jongsma

Transgenic plants are increasingly used as production platforms for various proteins, yet protein expression levels in the range of the most abundant plant protein, ribulose-1,5-bisphosphate carboxylase have not yet been achieved by nuclear transformation. Suitable gene regulatory 5′ and 3′ elements are crucial to obtain adequate expression. In this study an abundantly transcribed member (rbcS1) of the ribulose-1,5-bisphosphate carboxylase small-subunit gene family of chrysanthemum (Chrysanthemum morifolium Ramat.) was cloned. The promoter of rbcS1 was found to be homologous to promoters of highly expressed rbcS gene members of the plant families Asteraceae, Fabaceae and Solanaceae. The regulatory 5′ and 3′ non-translated regions of rbcS1 were engineered to drive heterologous expression of various genes. In chrysanthemum, the homologous rbcS1 cassette resulted in a β-glucuronidase (gusA) accumulation of, at maximum, 0.88% of total soluble protein (population mean 0.17%). In tobacco (Nicotiana tabacum L.), the gusA expression reached 10% of total soluble protein. The population mean of 2.7% was found to be 7- to 8-fold higher than for the commonly used cauliflower mosaic virus (CaMV) 35S promoter (population mean 0.34%). RbcS1-driven expression of sea anemone equistatin in potato (Solanum tuberosum L.), and potato cystatin in tomato (Lycopersicon esculentum Mill.) yielded maximum levels of 3–7% of total soluble protein. The results demonstrate, that the compact 2-kb rbcS1 expression cassette provides a novel nuclear transformation vector that generates plants with expression levels of up to 10% of total protein.


Planta | 1994

Trypsin inhibitor activity in mature tobacco and tomato plants is mainly induced locally in response to insect attack, wounding and virus infection

Maarten A. Jongsma; Petra L. Bakker; Bert Visser; Willem J. Stiekema

Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)−1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)−1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.


Plant Science | 1986

Breeding of a tomato genotype readily accessible to genetic manipulation

Maarten Koornneef; Corrie J. Hanhart; Maarten A. Jongsma; Ingrid Toma; R. Weide; P. Zabel; Jacques Hille

A tomato genotype, superior in regenerating plants from cell cultures, was obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. This genotype, MsK93, greatly facilitates genetic manipulation of tomato, as was demonstrated by successful leaf disc transformation using Agrobacterium tumefaciens and by direct gene transer to protoplasts derived from callus.


Insect Biochemistry and Molecular Biology | 1998

The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors

Kristina Gruden; Borut Štrukelj; Tatjana Popovič; Brigita Lenarčič; Tadeja Bevec; Jože Brzin; Igor Kregar; Jana Herzog-Velikonja; Willem J. Stiekema; Dirk Bosch; Maarten A. Jongsma

High levels of protease inhibitors are induced in potato leaves by wounding. These inhibitors, when ingested by Colorado potato beetle (Leptinotarsa decemlineata Say) larvae, induce expression of specific proteolytic activities in the gut. Induced protease activities cannot be inhibited by potato inhibitors and thus enable the insects to overcome this defence mechanism of potato plants. The induced aminopeptidase and endoproteolytic activities both have the characteristics of cysteine proteases. Twenty-one protein inhibitors of different structural types have been examined for their ability to inhibit these activities in vitro. Members of the cystatin superfamily were found to be poor inhibitors of the induced endoproteolytic activities, except for the third domain of human kininogen, which was a fairly strong inhibitor (75% inhibition). The strongest inhibition (85%) of induced endoproteolytic activity was obtained using structurally different thyroglobulin type-1 domain-like inhibitors--equistatin and MHC class II-associated p41 invariant fragment. Experiments performed using three synthetic substrates for endoproteases gave similar results and indicate the existence of at least different endoproteolytic enzymes resistant to potato inhibitors. The induced aminopeptidase activity can be inhibited only by stefin family of inhibitors in cystatin superfamily. In in vivo experiments, Colorado potato beetle larvae fed on equistatin-coated potato leaves were strongly retarded in their growth and almost 50% died after 4 days. This demonstrated the potential of equistatin to protect crops from insect attack.


Plant Physiology | 2003

Expression of Sea Anemone Equistatin in Potato. Effects of Plant Proteases on Heterologous Protein Production

Nikolay S. Outchkourov; Boris Rogelj; Borut Štrukelj; Maarten A. Jongsma

Plants are increasingly used as production platforms of various heterologous proteins, but rapid protein turnover can seriously limit the steady-state expression level. Little is known about specific plant proteases involved in this process. In an attempt to obtain potato (Solanum tuberosum cv Desirée) plants resistant to Colorado potato beetle (Leptinotarsa decemlineata Say) larvae, the protease inhibitor equistatin was expressed under the control of strong, light-inducible and constitutive promoters and was targeted to the secretory pathway with and without endoplasmic reticulum retention signal. All constructs yielded similar stepwise protein degradation patterns, which considerably reduced the amount of active inhibitor in planta and resulted in insufficient levels for resistance against Colorado potato beetle larvae. Affinity purification of the degradation products and N-terminal sequencing allowed the identification of the amino acid P1-positions (asparagine [Asn]-13, lysine-56, Asn-82, and arginine-151) that were cleaved in planta. The proteases involved in the equistatin degradation were characterized with synthetic substrates and inhibitors. Kininogen domain 3 completely inhibited equistatin degradation in vitro. The results indicate that arginine/lysine-specific and legumain-type Asn-specific cysteine proteases seriously impede the functional accumulation of recombinant equistatin in planta. General strategies to improve the resistance to proteases of heterologous proteins in plants are proposed.

Collaboration


Dive into the Maarten A. Jongsma's collaboration.

Top Co-Authors

Avatar

Harro J. Bouwmeester

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jules Beekwilder

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem J. Stiekema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dirk Bosch

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Karen J. Kloth

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Nikolay S. Outchkourov

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Caiyun Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge