Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten F. Bobbert is active.

Publication


Featured researches published by Maarten F. Bobbert.


Journal of Biomechanics | 1988

Coordination in vertical jumping

Maarten F. Bobbert; Gerrit Jan van Ingen Schenau

The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition, myoelectric activity (EMG) was recorded from seven leg muscles. EMG-signals were rectified and low-pass filtered to obtain EMG-levels. The latter, which were assumed to reflect activation levels, rose to a plateau in the sequence m. semitendinosus, long head of m. biceps femoris, m. gluteus maximus, m. vastus medialis, m. rectus femoris, m. soleus, m. gastrocnemius. It was attempted to link the EMG-pattern to the purpose of the push-off, namely to maximize the effective energy (Ey) of the mass center of the body (MCB). The term Ey designates the sum of the potential energy of MCB and the kinetic energy due to the vertical velocity of MCB. One of the requirements for maximization of Ey is that the mono-articular extensor muscles release as much energy as possible before toe-off occurs. It is argued that this requirement can only be satisfied if the vertical velocity differences between the proximal and distal ends of body segments reach their peaks in a sequence. The sequence that is realized by the pattern of muscular activation is upper body, upper legs, lower legs, feet. Another important requirement is that the mechanical energy released by the muscles is optimally used. This requirement can be satisfied by transportation of energy via the biarticular m. rectus femoris and m. gastrocnemius.


Medicine and Science in Sports and Exercise | 1987

Drop jumping. I. The influence of jumping technique on the biomechanics of jumping.

Maarten F. Bobbert; P.A.J.B.M. Huijing; Gerrit Jan van Ingen Schenau

In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated. Ten subjects executed drop jumps from a height of 20 cm and counter-movement jumps. For the execution of the drop jumps, two different techniques were adopted. The first technique, referred to as bounce drop jump, required the subjects to reverse the downward velocity into an upward one as soon as possible after landing. The second technique, referred to as counter-movement drop jump, required them to do this more gradually by making a larger downward movement. During jumping, the subjects were filmed, ground reaction forces were registered, and electromyograms were recorded. The results of a biomechanical analysis show that moments and power output about knee and ankle joints reach larger values during the drop jumps than during counter-movement jumps. The largest values were attained during bounce drop jumps. Based on this finding, it was hypothesized that bounce drop jump is better suited than counter-movement drop jump for athletes who seek to improve the mechanical output of knee extensors and plantar flexors. Researchers are, therefore, advised to control jumping technique when investigating training effects of executing drop jumps.


Sports Medicine | 1990

Drop jumping as a training method for jumping ability.

Maarten F. Bobbert

Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to satisfy these requirements. This assumption is supported by a review of results of training studies. However, it appears that regular jumping exercises can be just as helpful. The same holds for exercises with weights, provided the subjects have no weight-training history. In fact, for unskilled jumpers who have no weight-training history, the effects of training programmes utilising these different exercises are additive. The most effective, efficient and safe way for a coach to improve the jumping achievement of his athletes may well be to submit them first to a training programme utilising regular jumps, then to a weight-training programme and finally to a drop jump training programme.In drop jump training programmes themselves, the improvement in jumping height varies greatly among studies. This variation cannot be explained satisfactorily with the information available on subjects and training programmes. Given the current state of knowledge, coaches seem to have no other option than to strictly copy a programme which has proved to be very effective. Obviously there is a need for more systematic research of the relationship between design and effect of drop jump training programmes. The most important variable to be controlled is drop jumping technique. From a review of biomechanical studies of drop jumping, it becomes clear that jumping technique strongly affects the mechanical output of muscles. The biomechanics of 2 techniques are discussed. In the bounce drop jump the downward movement after the drop is reversed as soon as possible into an upward push-off, while in the countermovement drop jump this is done more gradually by increasing the amplitude of the downward movement after landing. It is speculated that the bounce drop jump might trigger improvement of the power output capacity of muscles, whereas the repetition of the countermovement drop jump may help to improve coordination. Future training studies are needed to determine whether drop jumping technique really affects the outcome of the training, and if so, which technique should be preferred. Also, further biomechanical research is needed to determine kinematics and kinetics of other drop jumping techniques, and to trace potential dangers. The author urges for a close cooperation between coaches and scientists in future research.


Medicine and Science in Sports and Exercise | 1987

Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

Maarten F. Bobbert; P.A.J.B.M. Huijing; Gerrit Jan van Ingen Schenau

In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.


Journal of Biomechanics | 1992

Mechanical analysis of the landing phase in heel-toe running.

Maarten F. Bobbert; Maurice R. Yeadon; Benno M. Nigg

Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.


Journal of Biomechanics | 1990

Accuracy of determining the point of force application with piezoelectric force plates

Maarten F. Bobbert; Henk C. Schamhardt

The accuracy of determining the point of force application with piezoelectric force plates, as specified by the manufacturer, is lower than needed for certain applications. The purpose of this study was to evaluate the accuracy of a commonly used plate (KISTLER type 9287) and to improve it by proposing a correction algorithm. Forces were applied to a wooden board, supported in one corner by a stylus that rested on the force plate. To determine the influence of position and magnitude of the force vector, the stylus was placed on 117 different locations, and calibrated masses were used to exert vertical forces between 0 and 2000 N. To determine the influence of loading rate, dynamic tests were performed in which a subject ran across the board. In static tests at a given stylus position with actual coordinates x (short axis) and y (long axis), it was found that the calculated coordinates x and y of the point of force application had virtually constant values at forces above 1000 N. In dynamic tests, oscillations could occur in x and y with an amplitude of more than 20 mm. When these were avoided or removed by filtering, static and dynamic tests at a given stylus position showed the same values for x and y at forces above 1000 N. Across stylus positions, the errors x-x and y-y (measured at 1600 N) ranged from -20 to +20 mm. The average over 117 points of the absolute errors magnitude of x-x and magnitude of y-y amounted to 3.5 and 6.3 mm, respectively (mean values of three plates).(ABSTRACT TRUNCATED AT 250 WORDS)


Medicine and Science in Sports and Exercise | 1985

A comparison of one-legged and two-legged countermovement jumps.

A.J. van Soest; M.E. Roebroeck; Maarten F. Bobbert; P.A.J.B.M. Huijing; G.J. van Ingen Schenau

Ten well-trained male volleyball players performed one-legged and two-legged vertical countermovement jumps. Ground reaction forces, cinematographic data, and electromyographic data were recorded. Jumping height in one-legged jumps was 58.5% of that reached in two-legged jumps. Mean net torques in hip and ankle joints were higher in one-legged jumps. Net power output in the ankle joint was extremely high in one-legged jumps. This high power output was explained by a higher level of activation in both heads of m. gastrocnemius in the one-legged jump. A higher level of activation was also found in m. vastus medialis. These differences between unilateral and bilateral performance of the complex movement jumping were shown to be in agreement with differences reported in literature based on isometric and isokinetic experiments.


European Journal of Applied Physiology | 1986

Biomechanical analysis of drop and countermovement jumps

Maarten F. Bobbert; M.T. Mackay; D. Schinkelshoek; P.A.J.B.M. Huijing; G.J. van Ingen Schenau

SummaryFor 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle joints. In addition, electromyograms were recorded from five muscles in the lower extremity. The results obtained for DJ appeared to depend on jumping style. In a subgroup of subjects making a movement of large amplitude (i. e. bending their hips and knees considerably before pushing off) the push-off phase of DJ closely resembled that of CMJ. In a subgroup of subjects making a movement of small amplitude, however, the duration of the push-off phase was shorter, values for moments and mean power output at the knees and ankles were larger, and the mean EMG activity of m. gastrocnemius was higher in DJ than in CMJ. The findings are attributed to the influences of the rapid pre-stretch of knee extensors and plantar flexors after touch-down in DJ. In both subgroups, larger peak resultant reaction forces were found at the knee and ankle joints, and larger peak forces were calculated for the Achilles tendon in DJ than in CMJ.


Exercise and Sport Sciences Reviews | 2001

Why do people jump the way they do

Maarten F. Bobbert; A.J. van Soest; Vu; Faculteit der Bewegingswetenschappen

BOBBERT, M.F., and A.J. “KNOEK” van SOEST. Why do people jump the way they do? Exerc. Sport Sci. Rev., Vol. 29, No. 3, pp 95–102, 2001. When humans perform maximum height squat jumps, their segmental rotations contribute in a proximodistal sequence to the vertical acceleration of the center of gravity. The same kinematic pattern occurs in a forward dynamic model of the musculoskeletal system when muscle stimulation is optimized to maximize jump height. This paper examines why this kinematic pattern maximizes jump height in humans, given the design of the human musculoskeletal system.


Journal of Biomechanics | 1992

SPACAR: a software subroutine package for simulation of the behavior of biomechanical systems.

Arthur J. van Soest; A. L. Schwab; Maarten F. Bobbert; Gerrit Jan van Ingen Schenau

Direct dynamics computer simulation is gaining importance as a research tool in the biomechanical study of complex human movements. Therefore, the need for general-purpose software packages with which the equations of motion can be derived automatically and solved numerically is growing. In this paper such a method is described: SPACAR. The method is compared to well-known commercially available software packages. On the basis of the results obtained on a test problem simulated with both SPACAR and DADS, it is concluded that both methods are accurate; DADS is much faster. The user-friendliness of SPACAR is less than that of DADS. However, SPACAR has two major advantages. First is the basic deformability of all elements, which allows handling of all kinds of problems within a unified framework; second is the full availability of the source code, which allows the experienced user to broaden the scope of possibilities to any extent.

Collaboration


Dive into the Maarten F. Bobbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Schwab

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.T. Mackay

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge