Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten Speekenbrink is active.

Publication


Featured researches published by Maarten Speekenbrink.


Psychological Science | 2015

Social Influence on Risk Perception During Adolescence

Lisa J. Knoll; Lucía Magis-Weinberg; Maarten Speekenbrink; Sarah-Jayne Blakemore

Adolescence is a period of life in which peer relationships become increasingly important. Adolescents have a greater likelihood of taking risks when they are with peers rather than alone. In this study, we investigated the development of social influence on risk perception from late childhood through adulthood. Five hundred and sixty-three participants rated the riskiness of everyday situations and were then informed about the ratings of a social-influence group (teenagers or adults) before rating each situation again. All age groups showed a significant social-influence effect, changing their risk ratings in the direction of the provided ratings; this social-influence effect decreased with age. Most age groups adjusted their ratings more to conform to the ratings of the adult social-influence group than to the ratings of the teenager social-influence group. Only young adolescents were more strongly influenced by the teenager social-influence group than they were by the adult social-influence group, which suggests that to early adolescents, the opinions of other teenagers about risk matter more than the opinions of adults.


Psychological Review | 2012

Models of recognition, repetition priming, and fluency: Exploring a new framework

Christopher J. Berry; David R. Shanks; Maarten Speekenbrink; Richard N. Henson

We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely independent memory signals (such as explicit and implicit memory) drive recognition and priming; (c) a multiple-systems-2 (MS2) model, in which there are also 2 memory signals, but some degree of dependence is allowed between these 2 signals (and this model subsumes the SS and MS1 models as special cases); and (d) a dual-process signal detection (DPSD1) model, 1 possible extension of a dual-process theory of recognition (Yonelinas, 1994) to priming, in which a signal detection model is augmented by an independent recollection process. The predictions of the models are tested in a continuous-identification-with-recognition paradigm in both normal adults (Experiments 1-3) and amnesic individuals (using data from Conroy, Hopkins, & Squire, 2005). The SS model predicted numerous results in advance. These were not predicted by the MS1 model, though could be accommodated by the more flexible MS2 model. Importantly, measures of overall model fit favored the SS model over the others. These results illustrate a new, formal approach to testing theories of explicit and implicit memory.


Journal of Experimental Psychology: General | 2010

Learning in a changing environment

Maarten Speekenbrink; David R. Shanks

Multiple cue probability learning studies have typically focused on stationary environments. We present 3 experiments investigating learning in changing environments. A fine-grained analysis of the learning dynamics shows that participants were responsive to both abrupt and gradual changes in cue-outcome relations. We found no evidence that participants adapted to these types of change in qualitatively different ways. Also, in contrast to earlier claims that these tasks are learned implicitly, participants showed good insight into what they learned. By fitting formal learning models, we investigated whether participants learned global functional relationships or made localized predictions from similar experienced exemplars. Both a local (the associative learning model) and a global learning model (the Bayesian linear filter) fitted the data of the first 2 experiments. However, the results of Experiment 3, which was specifically designed to discriminate between local and global learning models, provided more support for global learning models. Finally, we present a novel model to account for the cue competition effects found in previous research and displayed by some of our participants.


Neuroscience & Biobehavioral Reviews | 2008

Learning strategies in amnesia

Maarten Speekenbrink; Shelley Channon; David R. Shanks

Previous research suggests that early performance of amnesic individuals in a probabilistic category learning task is relatively unimpaired. When combined with impaired declarative knowledge, this is taken as evidence for the existence of separate implicit and explicit memory systems. The present study contains a more fine-grained analysis of learning than earlier studies. Using a dynamic lens model approach with plausible learning models, we found that the learning process is indeed indistinguishable between an amnesic and control group. However, in contrast to earlier findings, we found that explicit knowledge of the task structure is also good in both the amnesic and the control group. This is inconsistent with a crucial prediction from the multiple-systems account. The results can be explained from a single system account and previously found differences in later categorization performance can be accounted for by a difference in learning rate.


Neuropsychologia | 2015

Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions.

Yu-Ting Huang; Dejan Georgiev; Thomas Foltynie; Patricia Limousin; Maarten Speekenbrink; Marjan Jahanshahi

When choosing between two options, sufficient accumulation of information is required to favor one of the options over the other, before a decision is finally reached. To establish the effect of dopaminergic medication on the rate of accumulation of information, decision thresholds and speed-accuracy trade-offs, we tested 14 patients with Parkinsons disease (PD) on and off dopaminergic medication and 14 age-matched healthy controls on two versions of the moving-dots task. One version manipulated the level of task difficulty and hence effort required for decision-making and the other the urgency, requiring decision-making under speed vs. accuracy instructions. The drift diffusion model was fitted to the behavioral data. As expected, the reaction time data revealed an effect of task difficulty, such that the easier the perceptual decision-making task was, the faster the participants responded. PD patients not only made significantly more errors compared to healthy controls, but interestingly they also made significantly more errors ON than OFF medication. The drift diffusion model indicated that PD patients had lower drift rates when tested ON compared to OFF medication, indicating that dopamine levels influenced the quality of information derived from sensory information. On the speed-accuracy task, dopaminergic medication did not directly influence reaction times or error rates. PD patients OFF medication had slower RTs and made more errors with speed than accuracy instructions compared to the controls, whereas such differences were not observed ON medication. PD patients had lower drift rates and higher response thresholds than the healthy controls both with speed and accuracy instructions and ON and OFF medication. For the patients, only non-decision time was higher OFF than ON medication and higher with accuracy than speed instructions. The present results demonstrate that when task difficulty is manipulated, dopaminergic medication impairs perceptual decision-making and renders it more errorful in PD relative to when patients are tested OFF medication. In contrast, for the speed/accuracy task, being ON medication improved performance by eliminating the significantly higher errors and slower RTs observed for patients OFF medication compared to the HC group. There was no evidence of dopaminergic medication inducing impulsive decisions when patients were acting under speed pressure. For the speed-accuracy instructions, the sole effect of dopaminergic medication was on non-decision time, which suggests that medication primarily affected processes tightly coupled with the motor symptoms of PD. Interestingly, the current results suggest opposite effects of dopaminergic medication on the levels of difficulty and speed-accuracy versions of the moving dots task, possibly reflecting the differential effect of dopamine on modulating drift rate (levels of difficulty task) and non-decision time (speed-accuracy task) in the process of perceptual decision making.


Psychological Science | 2016

A window of opportunity for cognitive training in adolescence

Lisa J. Knoll; Delia Fuhrmann; Ashok Sakhardande; Fabian Stamp; Maarten Speekenbrink; Sarah-Jayne Blakemore

In the current study, we investigated windows for enhanced learning of cognitive skills during adolescence. Six hundred thirty-three participants (11–33 years old) were divided into four age groups, and each participant was randomly allocated to one of three training groups. Each training group completed up to 20 days of online training in numerosity discrimination (i.e., discriminating small from large numbers of objects), relational reasoning (i.e., detecting abstract relationships between groups of items), or face perception (i.e., identifying differences in faces). Training yielded some improvement in performance on the numerosity-discrimination task, but only in older adolescents or adults. In contrast, training in relational reasoning improved performance on that task in all age groups, but training benefits were greater for people in late adolescence and adulthood than for people earlier in adolescence. Training did not increase performance on the face-perception task for any age group. Our findings suggest that for certain cognitive skills, training during late adolescence and adulthood yields greater improvement than training earlier in adolescence, which highlights the relevance of this late developmental stage for education.


Brain Stimulation | 2016

Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making

Dejan Georgiev; Lorenzo Rocchi; Pierluigi Tocco; Maarten Speekenbrink; John C. Rothwell; Marjan Jahanshahi

BACKGROUND The speed-accuracy trade-off (SAT) refers to the balancing of speed versus accuracy during decision-making. SAT is very commonly investigated with perceptual decision-making tasks such as the moving dots task (MDT). The dorsolateral prefrontal cortex (DLPFC) and the pre-supplementary motor area (pre-SMA) are two brain regions considered to be involved in the control of SAT. OBJECTIVES/HYPOTHESES The study tested whether the DLPFC and the pre-SMA play an essential role in the control of SAT. We hypothesized that continuous theta burst stimulation (cTBS) over the right DLPFC would primarily alter the rate of accumulation of evidence, whereas stimulation of the pre-SMA would influence the threshold for reaching a decision. METHODS Fifteen (5 females; mean age = 30, SD =5.40) healthy volunteers participated in the study. We used two versions of the MDT and cTBS over the right DLPFC, pre-SMA and sham stimulation. The drift diffusion model was fit to the behavioural data (reaction time and error rate) in order to calculate the drift rate, boundary separation (threshold) and non-decision time. RESULTS cTBS over the right DLPFC decreased the rate of accumulation of evidence (i.e. the drift rate from the diffusion model) in high (0.35 and 0.5) but not in low coherence trials. cTBS over the pre-SMA changed the boundary separation/threshold required to reach a decision on accuracy, but not on speed trials. CONCLUSIONS The results suggest for the first time that both the DLPFC and the pre-SMA make essential but distinct contributions to the modulation of SAT.


Royal Society Open Science | 2015

Multitasking during social interactions in adolescence and early adulthood

Kathryn L. Mills; Iroise Dumontheil; Maarten Speekenbrink; Sarah-Jayne Blakemore

Multitasking is part of the everyday lives of both adolescents and adults. We often multitask during social interactions by simultaneously keeping track of other non-social information. Here, we examined how keeping track of non-social information impacts the ability to navigate social interactions in adolescents and adults. Participants aged 11–17 and 22–30 years old were instructed to carry out two tasks, one social and one non-social, within each trial. The social task involved referential communication, requiring participants to use social cues to guide their decisions, which sometimes required taking a different perspective. The non-social task manipulated cognitive load by requiring participants to remember non-social information in the form of one two-digit number (low load) or three two-digit numbers (high load) presented before each social task stimulus. Participants showed performance deficits when under high cognitive load and when the social task involved taking a different perspective, and individual differences in both trait perspective taking and working memory capacity predicted performance. Overall, adolescents were less adept at multitasking than adults when under high cognitive load. These results suggest that multitasking during social interactions incurs performance deficits, and that adolescents are more sensitive than adults to the effects of cognitive load while multitasking.


Experimental Brain Research | 2016

Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure

Inês Pote; Mariam Torkamani; Zinovia Kefalopoulou; Ludvic Zrinzo; Patricia Limousin-Dowsey; Thomas Foltynie; Maarten Speekenbrink; Marjan Jahanshahi

The subthalamic nucleus (STN) is proposed to modulate response thresholds and speed–accuracy trade-offs. In situations of conflict, the STN is considered to raise response thresholds, allowing time for the accumulation of information to occur before a response is selected. Conversely, speed pressure is thought to reduce the activity of the STN and lower response thresholds, resulting in fast, errorful responses. In Parkinson’s disease (PD), subthalamic nucleus deep brain stimulation (STN-DBS) reduces the activity of the nucleus and improves motor symptoms. We predicted that the combined effects of STN stimulation and speed pressure would lower STN activity and lead to fast, errorful responses, hence resulting in impulsive action. We used the motion discrimination ‘moving-dots’ task to assess speed–accuracy trade-offs, under both speed and accuracy instructions. We assessed 12 patients with PD and bilateral STN-DBS and 12 age-matched healthy controls. Participants completed the task twice, and the patients completed it once with STN-DBS on and once with STN-DBS off, with order counterbalanced. We found that STN stimulation was associated with significantly faster reaction times but more errors under speed instructions. Application of the drift diffusion model showed that stimulation resulted in lower response thresholds when acting under speed pressure. These findings support the involvement of the STN in the modulation of speed–accuracy trade-offs and establish for the first time that speed pressure alone, even in the absence of conflict, can result in STN stimulation inducing impulsive action in PD.


Scientific Reports | 2016

Perception and recognition of faces in adolescence

Delia Fuhrmann; Lisa J. Knoll; Ashok Sakhardande; Maarten Speekenbrink; Kathrin Cohen Kadosh; Sarah-Jayne Blakemore

Most studies on the development of face cognition abilities have focussed on childhood, with early maturation accounts contending that face cognition abilities are mature by 3–5 years. Late maturation accounts, in contrast, propose that some aspects of face cognition are not mature until at least 10 years. Here, we measured face memory and face perception, two core face cognition abilities, in 661 participants (397 females) in four age groups (younger adolescents (11.27–13.38 years); mid-adolescents (13.39–15.89 years); older adolescents (15.90–18.00 years); and adults (18.01–33.15 years)) while controlling for differences in general cognitive ability. We showed that both face cognition abilities mature relatively late, at around 16 years, with a female advantage in face memory, but not in face perception, both in adolescence and adulthood. Late maturation in the face perception task was driven mainly by protracted development in identity perception, while gaze perception abilities were already comparatively mature in early adolescence. These improvements in the ability to memorize, recognize and perceive faces during adolescence may be related to increasing exploratory behaviour and exposure to novel faces during this period of life.

Collaboration


Dive into the Maarten Speekenbrink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Shanks

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nigel Harvey

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magda Osman

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa J. Knoll

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge