Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maayke Stomp is active.

Publication


Featured researches published by Maayke Stomp.


Nature | 2004

Adaptive divergence in pigment composition promotes phytoplankton biodiversity

Maayke Stomp; Jef Huisman; F.H. de Jongh; A. J. Veraart; D. Gerla; M. Rijkeboer; Bastiaan Willem Ibelings; Ute Wollenzien; Lucas J. Stal

The dazzling diversity of the phytoplankton has puzzled biologists for decades. The puzzle has been enlarged rather than solved by the progressive discovery of new phototrophic microorganisms in the oceans, including picocyanobacteria, pico-eukaryotes, and bacteriochlorophyll-based and rhodopsin-based phototrophic bacteria. Physiological and genomic studies suggest that natural selection promotes niche differentiation among these phototrophic microorganisms, particularly with respect to their photosynthetic characteristics. We have analysed competition for light between two closely related picocyanobacteria of the Synechococcus group that we isolated from the Baltic Sea. One of these two has a red colour because it contains the pigment phycoerythrin, whereas the other is blue-green because it contains high contents of the pigment phycocyanin. Here we report theory and competition experiments that reveal stable coexistence of the two picocyanobacteria, owing to partitioning of the light spectrum. Further competition experiments with a third marine cyanobacterium, capable of adapting its pigment composition, show that this species persists by investing in the pigment that absorbs the colour not used by its competitors. These results demonstrate the adaptive significance of divergence in pigment composition of phototrophic microorganisms, which allows an efficient utilization of light energy and favours species coexistence.


The ISME Journal | 2007

Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule.

Maayke Stomp; Jef Huisman; Lucas J. Stal; H.C.P. Matthijs

The photosynthetic pigments of phototrophic microorganisms cover different regions of the solar light spectrum. Utilization of the light spectrum can be interpreted in terms of classical niche theory, as the light spectrum offers opportunities for niche differentiation and allows coexistence of species absorbing different colors of light. However, which spectral niches are available for phototrophic microorganisms? Here, we show that the answer is hidden in the vibrations of the water molecule. Water molecules absorb light at specific wavebands that match the energy required for their stretching and bending vibrations. Although light absorption at these specific wavelengths appears only as subtle shoulders in the absorption spectrum of pure water, these subtle shoulders create large gaps in the underwater light spectrum due to the exponential nature of light attenuation. Model calculations show that the wavebands between these gaps define a series of distinct niches in the underwater light spectrum. Strikingly, these distinct spectral niches match the light absorption spectra of the major photosynthetic pigments on our planet. This suggests that vibrations of the water molecule have played a major role in the ecology and evolution of phototrophic microorganisms.


Ecology | 2011

Large-scale biodiversity patterns in freshwater phytoplankton

Maayke Stomp; Jef Huisman; Gary G. Mittelbach; Elena Litchman; Christopher A. Klausmeier

Our planet shows striking gradients in the species richness of plants and animals, from high biodiversity in the tropics to low biodiversity in polar and high-mountain regions. Recently, similar patterns have been described for some groups of microorganisms, but the large-scale biogeographical distribution of freshwater phytoplankton diversity is still largely unknown. We examined the species diversity of freshwater phytoplankton sampled from 540 lakes and reservoirs distributed across the continental United States and found strong latitudinal, longitudinal, and altitudinal gradients in phytoplankton biodiversity, demonstrating that microorganisms can show substantial geographic variation in biodiversity. Detailed analysis using structural equation models indicated that these large-scale biodiversity gradients in freshwater phytoplankton diversity were mainly driven by local environmental factors, although there were residual direct effects of latitude, longitude, and altitude as well. Specifically, we found that phytoplankton species richness was an increasing saturating function of lake chlorophyll a concentration, increased with lake surface area and possibly increased with water temperature, resembling effects of productivity, habitat area, and temperature on diversity patterns commonly observed for macroorganisms. In turn, these local environmental factors varied along latitudinal, longitudinal, and altitudinal gradients. These results imply that changes in land use or climate that affect these local environmental factors are likely to have major impacts on large-scale biodiversity patterns of freshwater phytoplankton.


The ISME Journal | 2008

Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems

Nof Atamna-Ismaeel; Gazalah Sabehi; Itai Sharon; Karl-Paul Witzel; Matthias Labrenz; Klaus Jürgens; Tamar Barkay; Maayke Stomp; Jef Huisman; Oded Béjà

Proteorhodopsins (PRs) are light-driven proton pumps that have been found in a variety of marine environments. The goal of this study was to search for PR presence in different freshwater and brackish environments and to explore the diversity of non-marine PR protein. Here, we show that PRs exist in distinctly different aquatic environments, ranging from clear water lakes to peat lakes and in the Baltic Sea. Some of the PRs observed in this study formed unique clades that were not previously observed in marine environments, whereas others were similar to PRs found in non-marine samples of the Global Ocean Sampling (GOS) expedition. Furthermore, the similarity of several PRs isolated from lakes in different parts of the world suggests that these genes are dispersed globally and that they may encode unique functional capabilities enabling successful competition in a wide range of freshwater environments. Phylogenomic analysis of genes found on these GOS scaffolds suggests that some of the freshwater PRs are found in freshwater Flavobacteria and freshwater SAR11-like bacteria.


The American Naturalist | 2008

The Timescale of Phenotypic Plasticity and Its Impact on Competition in Fluctuating Environments

Maayke Stomp; Mark A. van Dijk; Harriët M. J. van Overzee; Meike T. Wortel; Corrien A.M. Sigon; Martijn Egas; Hans L. Hoogveld; Herman J. Gons; Jef Huisman

Although phenotypic plasticity can be advantageous in fluctuating environments, it may come too late if the environment changes fast. Complementary chromatic adaptation is a colorful form of phenotypic plasticity, where cyanobacteria tune their pigmentation to the prevailing light spectrum. Here, we study the timescale of chromatic adaptation and its impact on competition among phytoplankton species exposed to fluctuating light colors. We parameterized a resource competition model using monoculture experiments with green and red picocyanobacteria and the cyanobacterium Pseudanabaena, which can change its color within ∼7 days by chromatic adaptation. The model predictions were tested in competition experiments, where the incident light color switched between red and green at different frequencies (slow, intermediate, and fast). Pseudanabaena (the flexible phenotype) competitively excluded the green and red picocyanobacteria in all competition experiments. Strikingly, the rate of competitive exclusion was much faster when the flexible phenotype had sufficient time to fully adjust its pigmentation. Thus, the flexible phenotype benefited from its phenotypic plasticity if fluctuations in light color were relatively slow, corresponding to slow mixing processes or infrequent storms in their natural habitat. This shows that the timescale of phenotypic plasticity plays a key role during species interactions in fluctuating environments.


The American Naturalist | 2012

The Nutrient-Load Hypothesis: Patterns of Resource Limitation and Community Structure Driven by Competition for Nutrients and Light

Verena S. Brauer; Maayke Stomp; Jef Huisman

Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.


Harmful Algae | 2014

Termination of a toxic Alexandrium bloom with hydrogen peroxide

Amanda Burson; H.C.P. Matthijs; W.J.J. de Bruijne; Renee Talens; R. Hoogenboom; Arjen Gerssen; Petra M. Visser; Maayke Stomp; K. Steur; Y. van Scheppingen; Jef Huisman

The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1millioncellsL-1 occurred in the brackish Ouwerkerkse Kreek in The Netherlands. The A. ostenfeldii bloom produced both saxitoxins and spirolides, and is held responsible for the death of a dog with a high saxitoxin stomach content. The Ouwerkerkse Kreek routinely discharges its water into the adjacent Oosterschelde estuary, and an immediate reduction of the bloom was required to avoid contamination of extensive shellfish grounds. Previously, treatment of infected waters with hydrogen peroxide (H2O2) successfully suppressed cyanobacterial blooms in lakes. Therefore, we adapted this treatment to eradicate the Alexandrium bloom using a three-step approach. First, we investigated the required H2O2 dosage in laboratory experiments with A. ostenfeldii. Second, we tested the method in a small, isolated canal adjacent to the Ouwerkerkse Kreek. Finally, we brought 50mgL-1 of H2O2 into the entire creek system with a special device, called a water harrow, for optimal dispersal of the added H2O2. Concentrations of both vegetative cells and pellicle cysts declined by 99.8% within 48h, and PSP toxin concentrations in the water were reduced below local regulatory levels of 15μgL-1. Zooplankton were strongly affected by the H2O2 treatment, but impacts on macroinvertebrates and fish were minimal. A key advantage of this method is that the added H2O2 decays to water and oxygen within a few days, which enables rapid recovery of the system after the treatment. This is the first successful field application of H2O2 to suppress a marine harmful algal bloom, although Alexandrium spp. reoccurred at lower concentrations in the following year. The results show that H2O2 treatment provides an effective emergency management option to mitigate toxic Alexandrium blooms, especially when immediate action is required.


Oecologia | 2006

Animal–plant–microbe interactions: direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands

Paul L. E. Bodelier; Maayke Stomp; Luis Santamaría; Marcel Klaassen; Hendrikus J. Laanbroek

Wetlands are among the most important ecosystems on Earth both in terms of productivity and biodiversity, but also as a source of the greenhouse gas CH4. Microbial processes catalyzing nutrient recycling and CH4 production are controlled by sediment physico-chemistry, which is in turn affected by plant activity and the foraging behaviour of herbivores. We performed field and laboratory experiments to evaluate the direct effect of herbivores on soil microbial activity and their indirect effects as the consequence of reduced macrophyte density, using migratory Bewick’s swans (Cygnus columbianus bewickii Yarrell) feeding on fennel pondweed (Potamogeton pectinatus L.) tubers as a model system. A controlled foraging experiment using field enclosures indicated that swan bioturbation decreases CH4 production, through a decrease in the activity of methanogenic Archaea and an increased rate of CH4 oxidation in the bioturbated sediment. We also found a positive correlation between tuber density (a surrogate of plant density during the previous growth season) and CH4 production activity. A laboratory experiment showed that sediment sterilization enhances pondweed growth, probably due to elimination of the negative effects of microbial activity on plant growth. In summary, the bioturbation caused by swan grazing modulates CH4 cycling by means of both direct and indirect (i.e. plant-mediated) effects with potential consequences for CH4 emission from wetland systems.


The ISME Journal | 2013

Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

Verena S. Brauer; Maayke Stomp; Camillo Rosso; Sebastiaan A. M. van Beusekom; Barbara Emmerich; Lucas J. Stal; Jef Huisman

Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of argumentation for the globally important group of unicellular diazotrophic cyanobacteria, and pose the following two hypotheses: (i) nitrogen fixation is limited by nitrogenase activity at low temperature and by oxygen diffusion at high temperature, which is manifested by a shift from strong to weak temperature dependence of nitrogenase activity, and (ii) high respiration rates are required to maintain very low levels of oxygen for nitrogenase, which results in enhanced respiratory cost per molecule of fixed nitrogen at low temperature. We tested these hypotheses in laboratory experiments with the unicellular cyanobacterium Cyanothece sp. BG043511. In line with the first hypothesis, the specific growth rate increased strongly with temperature from 18 to 30 °C, but leveled off at higher temperature under nitrogen-fixing conditions. As predicted by the second hypothesis, the respiratory cost of nitrogen fixation and also the cellular C:N ratio rose sharply at temperatures below 21 °C. In addition, we found that low temperature caused a strong delay in the onset of the nocturnal nitrogenase activity, which shortened the remaining nighttime available for nitrogen fixation. Together, these results point at a lower temperature limit for unicellular nitrogen-fixing cyanobacteria, which offers an explanation for their (sub)tropical distribution and suggests expansion of their biogeographical range by global warming.


Journal of Experimental Botany | 2017

Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?

Xing Ji; J. M. H. Verspagen; Maayke Stomp; Jef Huisman

Contrary to the current paradigm, competition experiments showed that green algae defeated cyanobacteria at low CO2 levels, whereas cyanobacteria with high-flux carbon uptake systems became stronger competitors at elevated CO2.

Collaboration


Dive into the Maayke Stomp's collaboration.

Top Co-Authors

Avatar

Jef Huisman

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martijn Egas

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjen Gerssen

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge