Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Klemm is active.

Publication


Featured researches published by Maciej Klemm.


IEEE Transactions on Antennas and Propagation | 2009

Radar-Based Breast Cancer Detection Using a Hemispherical Antenna Array—Experimental Results

Maciej Klemm; Ian J Craddock; Ja Leendertz; Aw Preece; R Benjamin

In this contribution, an ultrawideband (UWB) microwave system for breast cancer detection is presented. The system is based on a novel hemispherical real-aperture antenna array, which is employed in a multi-static radar-based detection system. The array consists of 16 UWB aperture-coupled stacked-patch antennas located on a section of a hemisphere. The radar system is designed to be used with realistic three-dimensional (3D) breast phantoms, which have been developed, as well as with real breast cancer patients during initial clinical trials. Images are formed using two different beamforming algorithms and the performance of these algorithms is firstly compared through numerical simulation. Experimental results for the same beamforming techniques are then presented, demonstrating the successful detection of 4 and 6 mm diameter spherical tumors in the curved breast phantom.


IEEE Transactions on Advanced Packaging | 2006

Design and Characterization of Purely Textile Patch Antennas

Ivo Locher; Maciej Klemm; Tünde Kirstein; Gerhard Tröster

In this paper, we present four purely textile patch antennas for Bluetooth applications in wearable computing using the frequency range around 2.4 GHz. The textile materials and the planar antenna shape provide a smooth integration into clothing while preserving the typical properties of textiles. The four antennas differ in the deployed materials and in the antenna polarization, but all of them feature a microstrip line as antenna feed. We have developed a manufacturing process that guarantees unaffected electrical behavior of the individual materials when composed to an antenna. Thus, the conductive textiles possess a sheet resistance of less than 1Omega/squarein order to keep losses at a minimum. The process also satisfies our requirements in terms of accuracy meeting the Bluetooth specifications. Our investigations not only characterize the performance of the antennas in planar shape, but also under defined bending conditions that resemble those of a worn garment. We show that the antennas can withstand clothing bends down to a radius of 37.5 mm without violating specifications


IEEE Transactions on Antennas and Propagation | 2006

Textile UWB Antennas for Wireless Body Area Networks

Maciej Klemm; Gerhard Troester

A new ultrawideband (UWB) textile antenna designed for UWB wireless body area network (WBAN) applications is presented. Unlike previous textile antennas, these antennas offer a direct integration into clothing due to a very small thickness (0.5 mm) and flexibility. We have realized two different designs of textile antennas: coplanar waveguide fed printed UWB disc monopole and UWB annular slot antenna. To our knowledge, these are the first textile UWB antennas reported in the open literature. Measured return loss and radiation pattern characteristics of textile UWB antennas agree well with simulations. Moreover, measured transfer functions show that these textile antennas possess excellent transient characteristics, when operating in free space as well as on the human body. They can operate in the entire UWB band approved by the Federal Communications Commission (3.1-10.6 GHz)


IEEE Transactions on Antennas and Propagation | 2005

Novel small-size directional antenna for UWB WBAN/WPAN applications

Maciej Klemm; István Z. Kovcs; Gert Frølund Pedersen; Gerhard Tröster

This paper presents a novel small-size directional antenna design for ultrawide-band wireless body area networks/wireless personal area networks applications. The design is based on a typical slot antenna structure with an added reflector in order to achieve directionality. The effects of different antenna parameters and human body proximity on the radiation characteristics are analyzed. Antenna measurements with an optic RF setup were performed in order to characterize the small-size antenna far field radiation pattern. The different structural antenna parameters were optimized via extensive numerical simulations. Results show that for frequencies above 3.5 GHz, where the power front-to-back ratio of the directional antenna is greater than 10 dB, its impedance is nearly the same as in the free space. It is not the case neither for the omnidirectional slot antenna nor the monopole antenna next to the body. Between 3 and 6 GHz performance of the novel directional antenna, in terms of radiation efficiency and SAR values, is significantly improved compared to omnidirectional antenna designs.


IEEE Transactions on Antennas and Propagation | 2010

Microwave Radar-Based Differential Breast Cancer Imaging: Imaging in Homogeneous Breast Phantoms and Low Contrast Scenarios

Maciej Klemm; Ja Leendertz; David Gibbins; Ian J Craddock; Aw Preece; R Benjamin

This paper presents an improved antenna array for radar-based breast cancer imaging. The improvement was achieved by increasing the number of antennas in the array to 31 elements, as well as by improving the antenna design itself. Using an experimental setup, with homogeneous curved breast phantoms, we have demonstrated substantial imaging improvement with the new antenna array. The new system is also able to detect 7 mm-diameter tumor phantoms in any location within the breast, even as close as 4 mm from the skin layer. Additionally, we have shown good imaging results in low-contrast scenarios, where the dielectric contrast between tumor and normal tissue was reduced to 2:1. Presented results clearly demonstrate the large impact of antennas characteristics on imaging performance.


IEEE Transactions on Antennas and Propagation | 2010

A Comparison of a Wide-Slot and a Stacked Patch Antenna for the Purpose of Breast Cancer Detection

David Gibbins; Maciej Klemm; Ian J Craddock; Ja Leendertz; Aw Preece; R Benjamin

A wide-slot UWB antenna is presented for intended use in the detection scheme being developed at the University of Bristol, based on the principle of synthetically focused UWB radar using a fully populated static array. The antennas measured and simulated, input and radiation characteristics are presented and compared to an existing, stacked patch antenna that has been designed for the same purpose. The results of this study show that the wide-slot antenna has excellent performance across the required frequency range. Compared to the stacked-patch antenna used in our previous array, the wide-slot antenna can be 3 times smaller (in terms of front surface). The compact nature of the slot antenna means that the detection array can be densely populated. Additionally, this new antenna offers better radiation coverage of the breast. For angles up to 60° away from bore-sight radiated pulses are almost identical (fidelity >95%), whereas for the patch antenna fidelity falls to 58% at the angular extremes. This uniform radiation into the breast should result in focused images with low levels of clutter.


IEEE Transactions on Antennas and Propagation | 2009

Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms

Maciej Klemm; Ian J Craddock; Aw Preece; Ja Leendertz; R Benjamin

This letter presents, for the first time, experimental work on microwave breast cancer imaging using inhomogeneous breast phantoms. A recently designed 31-antenna array is used in imaging experiments. The imaging system operates in the full ultrawideband frequency range, between 3 and 10 GHz. To verify imaging performance of our system, new breast phantoms with inhomogeneous interior were developed. For three different breast phantoms presented in this work, the contrast between spherical phantom tumors and surrounding materials ranges from 5:1 to 1.6:1. Our results show that the biggest challenge in radar microwave imaging is the inhomogeneity of the volume being sensed, and not the contrast itself. In addition to experimental results, we also present the new image formation algorithm, which is a modified version of the delay-and-sum (DAS) algorithm. The new algorithm makes use of a new weighting factor, the coherence factor. The new algorithm is effective in reducing clutter, providing better images. For the most demanding imaging example presented herein, the new algorithm improves the peak clutter-to-target energy ratio by 3.1 dB.


ieee antennas and propagation society international symposium | 2008

Experimental and clinical results of breast cancer detection using UWB microwave radar

Maciej Klemm; Ian J Craddock; Ja Leendertz; Aw Preece; R Benjamin

This paper presented the clinical results of breast cancer detection using a radar-based UWB microwave system developed at the University of Bristol. Additionally, the system overview and some experimental laboratory results are presented as well. For the clinical result shown in this contribution, we compare images obtained using the standard X-ray mammography and the radar-based microwave system. The developed microwave system has apparently successfully detected the tumor in correct position, as confirmed on the X-ray image, although the compression suffered by the breast during X-ray makes a precise positional determination impossible.


International Journal of Antennas and Propagation | 2008

Improved delay-and-sum beamforming algorithm for breast cancer detection

Maciej Klemm; Ian J Craddock; Ja Leendertz; Aw Preece; R Benjamin

We have evaluated a modified delay-and-sum (DAS) beamforming algorithm for breast cancer detection with a microwave radar-based system. The improved DAS algorithm uses an additional weight factor calculated at each focal point to improve image quality. These weights essentially represent the quality of preprocessing and coherent radar operation. Using a multistatic UWB radar system based on a hemispherical antenna array, we present experimental detection of 7 mm and 10 mm phantom tumours. We show that the new proposed DAS algorithm improves signal-to-clutter ratio in focused images by 2.65 dB for 10 mm tumour, and by 4.4 dB for 7 mm tumour.


loughborough antennas and propagation conference | 2011

Clinical trials of a multistatic UWB radar for breast imaging

Tommy Henriksson; Maciej Klemm; David Gibbins; Ja Leendertz; Tony Horseman; Aw Preece; R Benjamin; Ian J Craddock

This paper presents the development of a 60-element Ultra-WideBand (UWB) radar system for breast cancer detection and its use in clinical trials. The new system operates in the frequency range of 4–8GHz and is an improvement of the teams previous designs both in terms of the number of measurements made (which is increased by a factor of approximately 4) and in terms of acquisition speed. The 60-antenna radar system has undergone an extensive Clinical Trial in the Breast Care Centre at Frenchay Hospital, Bristol. The rapid data acquisition has improved the accuracy of images while also providing a clinical experience that is more convenient and acceptable to patients.

Collaboration


Dive into the Maciej Klemm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aw Preece

University of Bristol

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge