Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Lisicki is active.

Publication


Featured researches published by Maciej Lisicki.


Journal of Chemical Physics | 2012

One-particle correlation function in evanescent wave dynamic light scattering

Maciej Lisicki; B. Cichocki; Jan K. G. Dhont; Peter R. Lang

In order to interpret measured intensity autocorrelation functions obtained in evanescent wave scattering, their initial decay rates have been analyzed recently [P. Holmqvist, J. K. G. Dhont, and P. R. Lang, Phys. Rev. E 74, 021402 (2006); B. Cichocki, E. Wajnryb, J. Blawzdziewicz, J. K. G. Dhont, and P. R. Lang, J. Chem. Phys. 132, 074704 (2010); J. W. Swan and J. F. Brady, ibid. 135, 014701 (2011)]. A theoretical analysis of the longer time dependence of evanescent wave autocorrelation functions, beyond the initial decay, is still lacking. In this paper we present such an analysis for very dilute suspensions of spherical colloids. We present simulation results, a comparison to cumulant expansions, and experiments. An efficient simulation method is developed which takes advantage of the particular mathematical structure of the time-evolution equation of the probability density function of the position coordinate of the colloidal sphere. The computer simulation results are compared with analytic, first and second order cumulant expansions. The only available analytical result for the full time dependence of evanescent wave autocorrelation functions [K. H. Lan, N. Ostrowsky, and D. Sornette, Phys. Rev. Lett. 57, 17 (1986)], that neglects hydrodynamic interactions between the colloidal spheres and the wall, is shown to be quite inaccurate. Experimental results are presented and compared to the simulations and cumulant expansions.


Soft Matter | 2014

Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering

Maciej Lisicki; B. Cichocki; Simon A. Rogers; Jan K. G. Dhont; Peter R. Lang

In this article we extend recent experimental developments [Rogers et al., Phys. Rev. Lett., 2012, 109, 098305] by providing a suitable theoretical framework for the derivation of exact expressions for the first cumulant (initial decay rate) of the correlation function measured in Evanescent Wave Dynamic Light Scattering (EWDLS) experiments. We focus on a dilute suspension of optically anisotropic spherical Brownian particles diffusing near a planar hard wall. In such a system, translational and rotational diffusion are hindered by hydrodynamic interactions with the boundary which reflects the flow incident upon it, affecting the motion of colloids. The validity of the approximation by the first cumulant for moderate times is assessed by juxtaposition to Brownian dynamics simulations, and compared with experimental results. The presented method for the analysis of experimental data allows the determination of penetration-depth-averaged rotational diffusion coefficients of spherical colloids at low density.


Journal of Fluid Mechanics | 2017

Mobility of an axisymmetric particle near an elastic interface

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

Using a fully analytical theory, we compute the leading order corrections to the translational, rotational and translation-rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particles shape-dependent bulk mobility and the shape-independent parameters such as the membrane-particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particles eccentricity. We find that the corrections to the translation-rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.


Journal of Chemical Physics | 2016

Near-wall diffusion tensor of an axisymmetric colloidal particle.

Maciej Lisicki; B. Cichocki; Eligiusz Wajnryb

Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies have suggested a simple form of the near-wall diffusion matrix which depends on the distance and orientation of the particle with respect to the wall, which is usually calculated numerically. In this work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative correction scales as powers of inverse wall-particle distance and its angular structure is represented by simple functions in sines and cosines of the particles inclination angle to the wall. We analyse the correction for translational and rotational motion, as well as the translation-rotation coupling. Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which completes and corrects relations known from earlier numerical and theoretical findings.


Physics of Fluids | 2017

Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green’s functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cyli...


Journal of Chemical Physics | 2018

Swimming trajectories of a three-sphere microswimmer near a wall

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Christian Hoell; Hartmut Löwen

The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.


Journal of Chemical Physics | 2018

Hydrodynamic coupling and rotational mobilities near planar elastic membranes

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle; Andreas M. Menzel; Hartmut Löwen

We study theoretically and numerically, the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance toward shear and bending. Using a combination of the multipole expansion and Faxéns theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self mobilities and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where very good agreement is obtained over the whole range of applied frequencies.


Soft Matter | 2015

Near-wall dynamics of concentrated hard-sphere suspensions: comparison of evanescent wave DLS experiments, virial approximation and simulations

Yi Liu; Jerzy Blawzdziewicz; B. Cichocki; Jan K. G. Dhont; Maciej Lisicki; Eligiusz Wajnryb; Yuan-N. Young; Peter R. Lang

In this article we report on a study of the near-wall dynamics of suspended colloidal hard spheres over a broad range of volume fractions. We present a thorough comparison of experimental data with predictions based on a virial approximation and simulation results. We find that the virial approach describes the experimental data reasonably well up to a volume fraction of ϕ≈ 0.25 which provides us with a fast and non-costly tool for the analysis and prediction of evanescent wave DLS data. Based on this we propose a new method to assess the near-wall self-diffusion at elevated density. Here, we qualitatively confirm earlier results [Michailidou, et al., Phys. Rev. Lett., 2009, 102, 068302], which indicate that many-particle hydrodynamic interactions are diminished by the presence of the wall at increasing volume fractions as compared to bulk dynamics. Beyond this finding we show that this diminishment is different for the particle motion normal and parallel to the wall.


Acta Mechanica | 2018

Slow rotation of a spherical particle inside an elastic tube

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

In this paper, we present an analytical calculation of the rotational mobility functions of a particle rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance toward shearing and bending. We find that the correction to the particle rotational mobility about the cylinder axis depends solely on membrane shearing properties, while both shearing and bending manifest themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis a coupling between shearing and bending exists. Our analytical predictions are compared and validated with corresponding boundary integral simulations where a very good agreement is obtained.


Archive | 2016

Colloidal Hydrodynamics and Interfacial Effects

Maciej Lisicki; Gerhard Nägele

Interfaces and boundaries play an important role in numerous soft matter and biological systems. Apart from direct interactions, the boundaries interact with suspended microparticles by altering the solvent flow field in their vicinity. Hydrodynamic interactions with walls and liquid interfaces may lead to a significant change in the particle dynamics in (partially) confined geometry. In these lecture notes we review the basic concepts related to colloidal hydrodynamics and discuss in more detail the effects of geometric confinement and the hydrodynamic boundary conditions which an interface imposes on a suspension of microparticles. We start with considering the general characteristic features of low-Reynolds-number flows, which are an inherent part of any colloidal system, and discuss the appropriate boundary conditions for various types of interfaces. We then proceed to develop a proper theoretical description of the friction-dominated, inertia-free dynamics of colloidal particles. To this end, we introduce the concept of hydrodynamic mobility, and analyse the solutions of the Stokes equations for a single spherical particle in the bulk and in the presence of a planar solid-fluid, and fluid-fluid interfaces. Both forced and phoretic motions are considered, with a particular emphasis on the principles of electrophoresis and the associated fluid flows. Moreover, we discuss the hydrodynamic interactions of self-propelling microswimmers, and the peculiar motion of bacteria attracted to slip and no-slip walls.

Collaboration


Dive into the Maciej Lisicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Lauga

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Jan K. G. Dhont

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Peter R. Lang

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Hartmut Löwen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Eligiusz Wajnryb

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Hoell

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge