Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abdallah Daddi-Moussa-Ider is active.

Publication


Featured researches published by Abdallah Daddi-Moussa-Ider.


Physical Review E | 2016

Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles

Abdallah Daddi-Moussa-Ider; Achim Guckenberger; Stephan Gekle

The physical approach of a small particle (virus, medical drug) to the cell membrane represents the crucial first step before active internalization and is governed by thermal diffusion. Using a fully analytical theory we show that the stretching and bending of the elastic membrane by the approaching particle induces a memory in the system, which leads to anomalous diffusion, even though the particle is immersed in a purely Newtonian liquid. For typical cell membranes the transient subdiffusive regime extends beyond 10 ms and can enhance residence times and possibly binding rates up to 50%. Our analytical predictions are validated by numerical simulations.


Journal of Chemical Physics | 2016

Hydrodynamic interaction between particles near elastic interfaces

Abdallah Daddi-Moussa-Ider; Stephan Gekle

We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.


Journal of Fluid Mechanics | 2017

Mobility of an axisymmetric particle near an elastic interface

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

Using a fully analytical theory, we compute the leading order corrections to the translational, rotational and translation-rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particles shape-dependent bulk mobility and the shape-independent parameters such as the membrane-particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particles eccentricity. We find that the corrections to the translation-rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.


Physics of Fluids | 2016

Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation

Abdallah Daddi-Moussa-Ider; Achim Guckenberger; Stephan Gekle

We study the motion of a solid particle immersed in a Newtonian fluid and confined between two parallel elastic membranes possessing shear and bending rigidity. The hydrodynamic mobility depends on the frequency of the particle motion due to the elastic energy stored in the membrane. Unlike the single-membrane case, a coupling between shearing and bending exists. The commonly used approximation of superposing two single-membrane contributions is found to give reasonable results only for motions in the parallel, but not in the perpendicular direction. We also compute analytically the membrane deformation resulting from the motion of the particle, showing that the presence of the second membrane reduces deformation. Using the fluctuation-dissipation theorem we compute the Brownian motion of the particle, finding a long-lasting subdiffusive regime at intermediate time scales. We finally assess the accuracy of the employed point-particle approximation via boundary-integral simulations for a truly extended particle. They are found to be in excellent agreement with the analytical predictions.


Physical Review E | 2017

Hydrodynamic mobility of a solid particle near a spherical elastic membrane : II. Asymmetric motion

Abdallah Daddi-Moussa-Ider; Stephan Gekle

We use the image solution technique to compute the leading order frequency-dependent self-mobility function of a small solid particle moving perpendicular to the surface of a spherical capsule whose membrane possesses shearing and bending rigidities. Comparing our results with those obtained earlier for an infinitely extended planar elastic membrane, we find that membrane curvature leads to the appearance of a prominent additional peak in the mobility. This peak is attributed to the fact that the shear resistance of the curved membrane involves a contribution from surface-normal displacements, which is not the case for planar membranes. In the vanishing frequency limit, the particle self-mobility near a no-slip hard sphere is recovered only when the membrane possesses a nonvanishing resistance toward shearing. We further investigate capsule motion, finding that the pair-mobility function is solely determined by membrane shearing properties. Our analytical predictions are validated by fully resolved boundary integral simulations where a very good agreement is obtained.


European Physical Journal E | 2018

Brownian motion near an elastic cell membrane: A theoretical study

Abdallah Daddi-Moussa-Ider; Stephan Gekle

Abstract.Elastic confinements are an important component of many biological systems and dictate the transport properties of suspended particles under flow. In this paper, we review the Brownian motion of a particle moving in the vicinity of a living cell whose membrane is endowed with a resistance towards shear and bending. The analytical calculations proceed through the computation of the frequency-dependent mobility functions and the application of the fluctuation-dissipation theorem. Elastic interfaces endow the system with memory effects that lead to a long-lived anomalous subdiffusive regime of nearby particles. In the steady limit, the diffusional behavior approaches that near a no-slip hard wall. The analytical predictions are validated and supplemented with boundary-integral simulations.Graphical abstract


Physics of Fluids | 2017

Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green’s functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cyli...


Journal of Chemical Physics | 2018

Swimming trajectories of a three-sphere microswimmer near a wall

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Christian Hoell; Hartmut Löwen

The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.


Journal of Chemical Physics | 2018

Hydrodynamic coupling and rotational mobilities near planar elastic membranes

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle; Andreas M. Menzel; Hartmut Löwen

We study theoretically and numerically, the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance toward shear and bending. Using a combination of the multipole expansion and Faxéns theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self mobilities and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where very good agreement is obtained over the whole range of applied frequencies.


Acta Mechanica | 2018

Slow rotation of a spherical particle inside an elastic tube

Abdallah Daddi-Moussa-Ider; Maciej Lisicki; Stephan Gekle

In this paper, we present an analytical calculation of the rotational mobility functions of a particle rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance toward shearing and bending. We find that the correction to the particle rotational mobility about the cylinder axis depends solely on membrane shearing properties, while both shearing and bending manifest themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis a coupling between shearing and bending exists. Our analytical predictions are compared and validated with corresponding boundary integral simulations where a very good agreement is obtained.

Collaboration


Dive into the Abdallah Daddi-Moussa-Ider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hartmut Löwen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Hoell

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ali Ghaemi

University of Bayreuth

View shared research outputs
Top Co-Authors

Avatar

Andreas Menzel

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Segun Goh

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge