Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Paszkowski-Rogacz is active.

Publication


Featured researches published by Maciej Paszkowski-Rogacz.


Cell Stem Cell | 2009

A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

Li Ding; Maciej Paszkowski-Rogacz; Anja Nitzsche; Mikolaj Slabicki; Anne Kristin Heninger; Ingrid de Vries; Ralf Kittler; Magno Junqueira; Andrej Shevchenko; Herbert Schulz; Norbert Hubner; Michael Xavier Doss; Agapios Sachinidis; Juergen Hescheler; Roberto Iacone; Konstantinos Anastassiadis; A. Francis Stewart; M. Teresa Pisabarro; Antonio Caldarelli; Ina Poser; Mirko Theis; Frank Buchholz

Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.


PLOS Biology | 2010

A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

Mikolaj Slabicki; Mirko Theis; Dragomir B. Krastev; Sergey A. Samsonov; Emeline Mundwiller; Magno Junqueira; Maciej Paszkowski-Rogacz; Joan Teyra; Anne-Kristin Heninger; Ina Poser; Fabienne Prieur; Jeremy Truchetto; Christian Confavreux; Cecilia Marelli; Alexandra Durr; Jean Philippe Camdessanche; Alexis Brice; Andrej Shevchenko; M. Teresa Pisabarro; Giovanni Stevanin; Frank Buchholz

We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia.


PLOS ONE | 2011

RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity

Anja Nitzsche; Maciej Paszkowski-Rogacz; Filomena Matarese; Eva M. Janssen-Megens; Nina C. Hubner; Herbert Schulz; Ingrid de Vries; Li Ding; Norbert Huebner; Matthias Mann; Hendrik G. Stunnenberg; Frank Buchholz

For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.


The EMBO Journal | 2009

Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division.

Mirko Theis; Mikolaj Slabicki; Magno Junqueira; Maciej Paszkowski-Rogacz; Jana Sontheimer; Ralf Kittler; Anne-Kristine Heninger; Timo Glatter; Kristi Kruusmaa; Ina Poser; Anthony A. Hyman; M. Teresa Pisabarro; Matthias Gstaiger; Rudolf Aebersold; Andrej Shevchenko; Frank Buchholz

Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.


Nature Cell Biology | 2011

A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly

Dragomir B. Krastev; Mikolaj Slabicki; Maciej Paszkowski-Rogacz; Nina C. Hubner; Magno Junqueira; Andrej Shevchenko; Matthias Mann; Karla M. Neugebauer; Frank Buchholz

TP53(tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.


Nature Biotechnology | 2016

Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity

Janet Karpinski; Ilona Hauber; Jan Chemnitz; Schäfer C; Maciej Paszkowski-Rogacz; Debojyoti Chakraborty; Beschorner N; Helga Hofmann-Sieber; Lange Uc; Adam Grundhoff; Karl Hackmann; Schrock E; Abi-Ghanem J; Maria Teresa Pisabarro; Surendranath; Axel Schambach; Lindner C; van Lunzen J; Joachim Hauber; Frank Buchholz

Current combination antiretroviral therapies (cART) efficiently suppress HIV-1 reproduction in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. To generate an antiviral agent capable of eradicating the provirus from infected cells, we employed 145 cycles of substrate-linked directed evolution to evolve a recombinase (Brec1) that site-specifically recognizes a 34-bp sequence present in the long terminal repeats (LTRs) of the majority of the clinically relevant HIV-1 strains and subtypes. Brec1 efficiently, precisely and safely removes the integrated provirus from infected cells and is efficacious on clinical HIV-1 isolates in vitro and in vivo, including in mice humanized with patient-derived cells. Our data suggest that Brec1 has potential for clinical application as a curative HIV-1 therapy.


Nature Methods | 2012

Combined RNAi and localization for functionally dissecting long noncoding RNAs

Debojyoti Chakraborty; Dennis Kappei; Mirko Theis; Anja Nitzsche; Li Ding; Maciej Paszkowski-Rogacz; Vineeth Surendranath; Nicolas Berger; Herbert Schulz; Kathrin Saar; Norbert Hubner; Frank Buchholz

Whereas methods to comprehensively study cellular roles of protein-coding genes are available, techniques to systematically investigate long noncoding RNAs (lncRNAs), which have been implicated in diverse biological pathways, are limited. Here we report combined knockdown and localization analysis of noncoding RNAs (c-KLAN) that merges functional characterization and localization approaches to study lncRNAs. Using this technique we identified transcripts that regulate mouse embryonic stem cell identity.


BMC Bioinformatics | 2008

SCOWLP classification: structural comparison and analysis of protein binding regions.

Joan Teyra; Maciej Paszkowski-Rogacz; Gerd Anders; M. Teresa Pisabarro

BackgroundDetailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design.DescriptionProtein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed.We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions.The hierarchical classification of PBRs is implemented into the SCOWLP database and extends the SCOP classification with three additional family sub-levels: Binding Region, Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed within 2,561 families. In 65% of the cases we observe families containing more than one binding region. Besides, 22% of the regions are forming complex with more than one different protein family.ConclusionThe current SCOWLP classification and its web application represent a framework for the study of protein interfaces and comparative analysis of protein family binding regions. This comparison can be performed at atomic level and allows the user to study interactome conservation and variability. The new SCOWLP classification may be of great utility for reconstruction of protein complexes, understanding protein networks and ligand design. SCOWLP will be updated with every SCOP release. The web application is available at http://www.scowlp.org.


Blood | 2012

Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells

Katharina Ross; Anna Sedello; Gabriele Putz Todd; Maciej Paszkowski-Rogacz; Alexander W. Bird; Li Ding; Tatyana Grinenko; Kira Behrens; Nina C. Hubner; Matthias Mann; Claudia Waskow; Carol Stocking; Frank Buchholz

The transcription factor runt-related transcription factor 1 (Runx1) is essential for the establishment of definitive hematopoiesis during embryonic development. In adult blood homeostasis, Runx1 plays a pivotal role in the maturation of lymphocytes and megakaryocytes. Furthermore, Runx1 is required for the regulation of hematopoietic stem and progenitor cells. However, how Runx1 orchestrates self-renewal and lineage choices in combination with other factors is not well understood. In the present study, we describe a genome-scale RNA interference screen to detect genes that cooperate with Runx1 in regulating hematopoietic stem and progenitor cells. We identify the polycomb group protein Pcgf1 as an epigenetic regulator involved in hematopoietic cell differentiation and show that simultaneous depletion of Runx1 and Pcgf1 allows sustained self-renewal while blocking differentiation of lineage marker-negative cells in vitro. We found an up-regulation of HoxA cluster genes on Pcgf1 knock-down that possibly accounts for the increase in self-renewal. Moreover, our data suggest that cells lacking both Runx1 and Pcgf1 are blocked at an early progenitor stage, indicating that a concerted action of the transcription factor Runx1, together with the epigenetic repressor Pcgf1, is necessary for terminal differentiation. The results of the present study uncover a link between transcriptional and epigenetic regulation that is required for hematopoietic differentiation.


PLOS ONE | 2012

The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

Rupert W. Overall; Maciej Paszkowski-Rogacz; Gerd Kempermann

Background Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. Methodology/Principal Findings We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. Conclusions/Significance The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a ‘bottom-up’ community effort complementing the already successful ‘top-down’ approach of the Gene Ontology.

Collaboration


Dive into the Maciej Paszkowski-Rogacz's collaboration.

Top Co-Authors

Avatar

Frank Buchholz

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debojyoti Chakraborty

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Teresa Pisabarro

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikolaj Slabicki

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge