Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirko Theis is active.

Publication


Featured researches published by Mirko Theis.


Nature Cell Biology | 2007

Genome-scale RNAi profiling of cell division in human tissue culture cells

Ralf Kittler; Laurence Pelletier; Anne Kristine Heninger; Mikolaj Slabicki; Mirko Theis; Lukasz Miroslaw; Ina Poser; Steffen Lawo; Hannes Grabner; Karol Kozak; Jan Wagner; Vineeth Surendranath; Constance Richter; Wayne Bowen; Aimee L. Jackson; Bianca Habermann; Anthony A. Hyman; Frank Buchholz

Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.


Cell Stem Cell | 2009

A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

Li Ding; Maciej Paszkowski-Rogacz; Anja Nitzsche; Mikolaj Slabicki; Anne Kristin Heninger; Ingrid de Vries; Ralf Kittler; Magno Junqueira; Andrej Shevchenko; Herbert Schulz; Norbert Hubner; Michael Xavier Doss; Agapios Sachinidis; Juergen Hescheler; Roberto Iacone; Konstantinos Anastassiadis; A. Francis Stewart; M. Teresa Pisabarro; Antonio Caldarelli; Ina Poser; Mirko Theis; Frank Buchholz

Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.


Nature Methods | 2007

Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies.

Ralf Kittler; Vineeth Surendranath; Anne Kristin Heninger; Mikolaj Slabicki; Mirko Theis; Gabriele Putz; Kristin Franke; Antonio Caldarelli; Hannes Grabner; Karol Kozak; Jan Wagner; Effi Rees; Bernd Korn; Corina Frenzel; Christoph Sachse; Birte Sönnichsen; Jie Guo; Janell M. Schelter; Julja Burchard; Peter S. Linsley; Aimee L. Jackson; Bianca Habermann; Frank Buchholz

RNA interference (RNAi) has become an important technique for loss-of-gene-function studies in mammalian cells. To achieve reliable results in an RNAi experiment, efficient and specific silencing triggers are required. Here we present genome-wide data sets for the production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for human, mouse and rat. We used an algorithm to predict the optimal region for esiRNA synthesis for every protein-coding gene of these three species. We created a database, RiDDLE, for retrieval of target sequences and primer information. To test this in silico resource experimentally, we generated 16,242 esiRNAs that can be used for RNAi screening in human cells. Comparative analyses with chemically synthesized siRNAs demonstrated a high silencing efficacy of esiRNAs and a 12-fold reduction of downregulated off-target transcripts as detected by microarray analysis. Hence, the presented esiRNA libraries offer an efficient, cost-effective and specific alternative to presently available mammalian RNAi resources.


PLOS Biology | 2010

A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

Mikolaj Slabicki; Mirko Theis; Dragomir B. Krastev; Sergey A. Samsonov; Emeline Mundwiller; Magno Junqueira; Maciej Paszkowski-Rogacz; Joan Teyra; Anne-Kristin Heninger; Ina Poser; Fabienne Prieur; Jeremy Truchetto; Christian Confavreux; Cecilia Marelli; Alexandra Durr; Jean Philippe Camdessanche; Alexis Brice; Andrej Shevchenko; M. Teresa Pisabarro; Giovanni Stevanin; Frank Buchholz

We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia.


Nature Methods | 2006

Enzymatically prepared RNAi libraries

Frank Buchholz; Ralf Kittler; Mikolaj Slabicki; Mirko Theis

Large-scale RNA interference (RNAi) screens in mammalian cells have mainly used synthetic small interfering RNA (siRNA) or short hairpin RNA (shRNA) libraries. The RNAi triggers for both of these approaches were designed with algorithm-based predictions to identify single sequences for mRNA knockdown. Alternatives to these approaches have recently been developed using enzymatic methods. Here we describe the concepts of enzymatically prepared shRNA and siRNA libraries, and discuss their strengths and limitations.


Cell | 2014

Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1

Swasti Raychaudhuri; Christian Loew; Roman Körner; Stefan Pinkert; Mirko Theis; Manajit Hayer-Hartl; Frank Buchholz; F. Ulrich Hartl

When exposed to proteotoxic environmental conditions, mammalian cells activate the cytosolic stress response in order to restore protein homeostasis. A key feature of this response is the heat shock transcription factor 1 (HSF1)-dependent expression of molecular chaperones. Here, we describe the results of an RNA interference screen in HeLa cells to identify modulators of stress response induction and attenuation. The modulator proteins are localized in multiple cellular compartments, with chromatin modifiers and nuclear protein quality control playing a central regulatory role. We find that the acetyltransferase, EP300, controls the cellular level of activatable HSF1. This involves acetylation of HSF1 at multiple lysines not required for function and results in stabilization of HSF1 against proteasomal turnover. Acetylation of functionally critical lysines during stress serves to fine-tune HSF1 activation. Finally, the nuclear proteasome system functions in attenuating the stress response by degrading activated HSF1 in a manner linked with the clearance of misfolded proteins.


The EMBO Journal | 2009

Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division.

Mirko Theis; Mikolaj Slabicki; Magno Junqueira; Maciej Paszkowski-Rogacz; Jana Sontheimer; Ralf Kittler; Anne-Kristine Heninger; Timo Glatter; Kristi Kruusmaa; Ina Poser; Anthony A. Hyman; M. Teresa Pisabarro; Matthias Gstaiger; Rudolf Aebersold; Andrej Shevchenko; Frank Buchholz

Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.


Nature Methods | 2012

Combined RNAi and localization for functionally dissecting long noncoding RNAs

Debojyoti Chakraborty; Dennis Kappei; Mirko Theis; Anja Nitzsche; Li Ding; Maciej Paszkowski-Rogacz; Vineeth Surendranath; Nicolas Berger; Herbert Schulz; Kathrin Saar; Norbert Hubner; Frank Buchholz

Whereas methods to comprehensively study cellular roles of protein-coding genes are available, techniques to systematically investigate long noncoding RNAs (lncRNAs), which have been implicated in diverse biological pathways, are limited. Here we report combined knockdown and localization analysis of noncoding RNAs (c-KLAN) that merges functional characterization and localization approaches to study lncRNAs. Using this technique we identified transcripts that regulate mouse embryonic stem cell identity.


Methods of Molecular Biology | 2013

Designing efficient and specific endoribonuclease-prepared siRNAs.

Vineeth Surendranath; Mirko Theis; Bianca Habermann; Frank Buchholz

RNA interference (RNAi) has grown to be one of the main techniques for loss-of-function studies, leading to the elucidation of biological function of genes in various cellular systems and model organisms. While for many invertebrates such as Drosophila melanogaster (D. melanogaster) and Caenorhabditis elegans (C. elegans) long double-stranded RNA (dsRNA) can directly be used to induce a RNAi response, chemically synthesized small interfering RNAs (siRNAs) are typically employed in mammalian cells to avoid an interferon-like response triggered by long dsRNA (Reynolds et al., RNA 12:988-993, 2006). However, siRNAs are expensive and beset with unintentional gene targeting effects (off-targets) confounding the analysis of results from such studies. We, and others, have developed an alternative technology for RNAi in mammalian cells, termed endoribonuclease-prepared siRNA (esiRNA), which is based on the enzymatic generation of siRNA pools by digestion of long dsRNAs with recombinant RNase III in vitro (Yang et al., Proc Natl Acad Sci USA 99: 9942-9947, 2002; Myers et al., Nat Biotechnol 21:324-328; 2003). This technology has proven to be cost-efficient and reliable. Furthermore, several studies have demonstrated that complex pools of siRNAs, as inherent in esiRNAs, which target one transcript reduce off-target effects (Myers et al., J RNAi Gene Silencing 2:181, 2006; Kittler et al., Nat Methods 4:337-344, 2007). Within this chapter we describe design criteria for the generation of target-optimized esiRNAs.


Methods | 2011

High-throughput RNAi screening in mammalian cells with esiRNAs

Mirko Theis; Frank Buchholz

The development of advanced functional genomic tools has paved the way for systematic investigations of biological processes in health and disease. In particular, the implementation of RNA interference (RNAi) as a genome-wide, loss-of-function screening tool has enabled scientists to probe the role for every gene in cellular assays and many new factors for various processes have been discovered employing RNAi screens in recent years. However, the results also demonstrate the complexity of biological systems and indicate that we are still a long way from understanding functional networks in depth. Nevertheless, RNAi screens present a powerful method to interrogate gene function in high-throughput and different methods to elicit RNAi in mammalian cells have been developed. Here, we describe steps that should be considered when planning an RNAi screen employing endoribonuclease prepared (e)siRNAs. We provide useful information on how to implement the screen and analyze the results. Furthermore, we discuss strategies for hit validation and present an outline on how to follow-up on verified hits to gain a molecular understanding of the underlying phenotypes.

Collaboration


Dive into the Mirko Theis's collaboration.

Top Co-Authors

Avatar

Frank Buchholz

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikolaj Slabicki

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ralf Kittler

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debojyoti Chakraborty

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Teresa Pisabarro

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge